scispace - formally typeset
Journal ArticleDOI

Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?

Kim A. Brogden
- 01 Mar 2005 - 
- Vol. 3, Iss: 3, pp 238-250
TLDR
In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented and several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibits protein synthesis or inhibit enzymatic activity.
Abstract
Antimicrobial peptides are an abundant and diverse group of molecules that are produced by many tissues and cell types in a variety of invertebrate, plant and animal species. Their amino acid composition, amphipathicity, cationic charge and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of antimicrobial peptide activity, their relevance to how peptides damage and kill microorganisms still need to be clarified. Recently, there has been speculation that transmembrane pore formation is not the only mechanism of microbial killing. In fact several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibit protein synthesis or inhibit enzymatic activity. In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented.

read more

Citations
More filters
Journal ArticleDOI

Antimicrobial peptides in toroidal and cylindrical pores

TL;DR: Observations agree with the prevailing views that alamethicin forms barrel-stave pores whereas melittin forms toroidal pores, using molecular dynamics simulations of the peptides in pre-formed toroidal and cylindrical pores.
Journal ArticleDOI

Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers.

TL;DR: Increase the number of amine groups on the most hydrophobic polymer reduced its hemolytic activity significantly, and dye leakage experiments on lipid vesicles that mimic bacteria and red blood cell membranes showed a strong correlation with the hemolysis data.
Journal ArticleDOI

The design, structures and therapeutic potential of protein epitope mimetics.

TL;DR: This work focuses on the protein epitope mimetic (PEM) approach, where folded 3D structures of peptides and proteins are taken as starting points for the design of synthetic molecules that mimic key epitopes involved in protein-protein and protein-nucleic acid interactions.
References
More filters
Journal ArticleDOI

MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures

TL;DR: The MOLSCRIPT program as discussed by the authors produces plots of protein structures using several different kinds of representations, including simple wire models, ball-and-stick models, CPK models and text labels.
Journal ArticleDOI

Bacterial biofilms : A common cause of persistent infections

TL;DR: Improvements in understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.
Journal ArticleDOI

Antimicrobial peptides of multicellular organisms

TL;DR: As the need for new antibiotics becomes more pressing, could the design of anti-infective drugs based on the design principles these molecules teach us?
Book ChapterDOI

Raster3D: photorealistic molecular graphics.

TL;DR: Raster3D is discussed, which is a suite of programs for molecular graphics, which must compromise the quality of rendered images to achieve rendering speeds high enough for useful interactive manipulation of three-dimensional objects.
Journal ArticleDOI

Defensins: antimicrobial peptides of innate immunity.

TL;DR: This review, inspired by a spate of recent studies ofdefensins in human diseases and animal models, focuses on the biological function of defensins.
Related Papers (5)