scispace - formally typeset
Journal ArticleDOI

Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS

TLDR
In this paper, the authors employ both theory and experiment to assess the PV relevant properties of SnS and clarify on whether SnS has an indirect or direct band gap and what is the minority carrier effective mass as a function of the film orientation.
Abstract
SnS is a potential earth-abundant photovoltaic (PV) material. Employing both theory and experiment to assess the PV relevant properties of SnS, we clarify on whether SnS has an indirect or direct band gap and what is the minority carrier effective mass as a function of the film orientation. SnS has a 1.07 eV indirect band gap with an effective absorption onset located 0.4 eV higher. The effective mass of minority carrier ranges from 0.5 m0 perpendicular to the van der Waals layers to 0.2 m0 into the van der Waals layers. The positive characteristics of SnS feature a desirable p-type carrier concentration due to the easy formation of acceptor-like intrinsic Sn vacancy defects. Potentially detrimental deep levels due to SnS antisite or S vacancy defects can be suppressed by suitable adjustment of the growth condition towards S-rich.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Effective masses of the tin sulfide influenced by intrinsic defects: A theoretical prediction

TL;DR: In this paper, the influence of intrinsic defects in the effective mass of the charge carriers of tin sulfide was analyzed and the authors demonstrated that the vacancy defect modifies the effective masses and allow them to infer that large values of effective mass contribute to low mobility between parallel planes with Van der Waals forces.
Journal ArticleDOI

Tin monosulfide (SnS) epitaxial films grown by RF magnetron sputtering and sulfurization on MgO(100) substrates

TL;DR: In this paper , the crystallographic and electrical properties of tin monosulfide (SnS) epitaxial thin films grown by RF magnetron sputtering and sulfurization were investigated.

Two-dimensional materials: electronic and structural properties of defective graphene and boron nitride from first principles

TL;DR: In this paper, a modelo estequiometrico de baixa energia formado na direcao armchair, and a fronteira de antifase nesse material.
Journal ArticleDOI

Electronic gap stability of two-dimensional tin monosulfide phases: Towards optimal structures for electronic device applications

TL;DR: In this paper , the authors have prepared tin sulfide platelets on graphite using vapor phase deposition under a known temperature gradient and observed two types of growth modes: (i) a dominant one with platelet-like flat crystals and (ii) a less favorable one, formed by spiral terraces.
Journal ArticleDOI

Effects of quantum confinements in tin sulphide nanocrystals produced by wet-solution technique

TL;DR: In this article, a thin-film nano-crystal was prepared using tin chloride (SnCl2) as a tin ion (Sn+2) source and sodium sulfide (Na2S) as an ion source using solution magneto DC sputtering technique.
References
More filters
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells

TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Journal ArticleDOI

19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor

TL;DR: In this paper, the authors reported a new record total area efficiency of 19·9% for thin-film solar cells using three-stage co-evaporation with a modified surface termination.
Journal ArticleDOI

High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber

TL;DR: A non-vacuum, slurry-based coating method that combines advantages of both solution processing and particlebased deposition is shown, enabling fabrication of Cu2ZnSn(Se,S)4 devices with over 9.6% efficiency—a factor of five performance improvement relative to previous attempts to use highthroughput ink-based approaches and >40% higher than previous record devices prepared using vacuum-based methods.
Journal ArticleDOI

Materials availability expands the opportunity for large-scale photovoltaics deployment.

TL;DR: A roadmap emphasizing low-cost alternatives that could become a dominant new approach for photovoltaics research and deployment is developed and it is found that devices performing below 10% power conversion efficiencies deliver the same lifetime energy output as those above 20% when a 3/4 material reduction is achieved.
Related Papers (5)