scispace - formally typeset
Journal ArticleDOI

Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS

TLDR
In this paper, the authors employ both theory and experiment to assess the PV relevant properties of SnS and clarify on whether SnS has an indirect or direct band gap and what is the minority carrier effective mass as a function of the film orientation.
Abstract
SnS is a potential earth-abundant photovoltaic (PV) material. Employing both theory and experiment to assess the PV relevant properties of SnS, we clarify on whether SnS has an indirect or direct band gap and what is the minority carrier effective mass as a function of the film orientation. SnS has a 1.07 eV indirect band gap with an effective absorption onset located 0.4 eV higher. The effective mass of minority carrier ranges from 0.5 m0 perpendicular to the van der Waals layers to 0.2 m0 into the van der Waals layers. The positive characteristics of SnS feature a desirable p-type carrier concentration due to the easy formation of acceptor-like intrinsic Sn vacancy defects. Potentially detrimental deep levels due to SnS antisite or S vacancy defects can be suppressed by suitable adjustment of the growth condition towards S-rich.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Charge transportation mechanisms in TiO2/SnS/Ag solar cells

TL;DR: In this article, the effect of deposition parameters including annealing temperature and film thickness on the role of mentioned properties was investigated with an emphasis on the band alignments and charge space limited current (SCLC) behavior.
Journal ArticleDOI

Facile Chemical Bath Synthesis of SnS Nanosheets and Their Ethanol Sensing Properties.

TL;DR: The sensors of Tin(II) monosulfide nanosheets synthesized using SnCl4•5H2O and S powders as raw materials showed excellent selectivity for the detection of ethanol over acetone, methanol, and ammonia gases, which indicates the SnS nanOSheets are promising for high-performance ethanol gas sensing applications.
Journal ArticleDOI

SnS thin films grown by sulfurization of evaporated Sn layers: Effect of sulfurization temperature and pressure

TL;DR: In this paper, the effect of sulfurization parameters, such as temperature and pressure, on the properties of tin sulfide layers has been investigated, and the direct band gap energy about 1.2 eV has been determined.
Journal ArticleDOI

An Enzymatic Glucose Sensor Composed of Carbon-Coated Nano Tin Sulfide

TL;DR: A biosensor based on a glucose oxidase (GOx) immobilized, carbon-coated tin sulfide (SnS) assembled on a glass carbon electrode (GCE) was developed, and its direct electrochemistry was investigated.
Journal ArticleDOI

Structural, optical and electrical studies of DC-RF magnetron co-sputtered Cu, In & Ag doped SnS thin films for photovoltaic applications

TL;DR: In this paper, the tuning of optical and electrical properties of SnS through the incorporation of Cu, In and Ag atom without altering its chemical and crystal structural properties, using DC-RF magnetron co-sputtering technique with an in-situ substrate temperature of 400 °C.
References
More filters
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells

TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Journal ArticleDOI

19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor

TL;DR: In this paper, the authors reported a new record total area efficiency of 19·9% for thin-film solar cells using three-stage co-evaporation with a modified surface termination.
Journal ArticleDOI

High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber

TL;DR: A non-vacuum, slurry-based coating method that combines advantages of both solution processing and particlebased deposition is shown, enabling fabrication of Cu2ZnSn(Se,S)4 devices with over 9.6% efficiency—a factor of five performance improvement relative to previous attempts to use highthroughput ink-based approaches and >40% higher than previous record devices prepared using vacuum-based methods.
Journal ArticleDOI

Materials availability expands the opportunity for large-scale photovoltaics deployment.

TL;DR: A roadmap emphasizing low-cost alternatives that could become a dominant new approach for photovoltaics research and deployment is developed and it is found that devices performing below 10% power conversion efficiencies deliver the same lifetime energy output as those above 20% when a 3/4 material reduction is achieved.
Related Papers (5)