scispace - formally typeset
Open AccessJournal ArticleDOI

Biomaterial-driven in situ cardiovascular tissue engineering : a multi-disciplinary perspective

TLDR
The main current challenges for in situ cardiovascular regeneration are pinpointed and further address, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.
Abstract
There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Porous scaffolds for bone regeneration

TL;DR: This review focuses on the relationship between the porosity and pore size of scaffolds and subsequent osteogenesis, vascularisation and scaffold degradation during bone regeneration.
Journal ArticleDOI

Achieving Controlled Biomolecule–Biomaterial Conjugation

TL;DR: This review focuses on the chemistry of biomolecule conjugation and provides a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization and highlights the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Journal ArticleDOI

Minimally Invasive and Regenerative Therapeutics

TL;DR: The use of MIRET to treat different tissues and organs and some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients.
Journal ArticleDOI

Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity

TL;DR: An unmet clinical need remains for valve replacements with regenerative, remodelling and growth potential, and next-generation tissue-engineered heart valves (TEHVs) are a promising therapeutic option for patients with valvular heart disease.
Journal ArticleDOI

Collagen-Based Tissue Engineering Strategies for Vascular Medicine.

TL;DR: The current state of the art about the use of collagen-based strategies, mainly as a coating material for the functionalization of vascular graft luminal surface, as a drug delivery system for the release of pro-endothelialization factors, and as physiologically relevant in vitro vascular models, and the future trend in this field of research will be presented and discussed.
References
More filters
Journal ArticleDOI

Regeneration or scarring: an immunologic perspective

TL;DR: Evidence that processes of regenerative growth and patterning for the formation of new structures such as hair follicles may involve modulation of the inflammatory response to the injury in a way that reduces fibrosis and formation of scar tissue is reviewed.
Journal ArticleDOI

Effect of Electrospun Fiber Diameter and Alignment on Macrophage Activation and Secretion of Proinflammatory Cytokines and Chemokines

TL;DR: The results indicate that the diameter of electrospun PLLA fibers, rather than fiber alignment, plays a relevant role in influencing in vitro macrophage activation and secretion of proinflammatory molecules.
Journal ArticleDOI

Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration

TL;DR: Dual-delivery of VEGF and PDGF by the modified electrospun membranes could facilitate revascularization in small-diameter blood vessels and generate rapid proliferation after day 6, which is of great benefit to blood vessel regeneration.
Journal ArticleDOI

Platelet adhesion under flow.

TL;DR: The adaptation of platelet‐adhesive functions to the effects of blood flow is the main focus of this review, with a focus on platelet adhesion to vascular wall structures, to one another, or to other blood cells.
Journal ArticleDOI

Macrophage Depletion by Clodronate-Containing Liposomes Reduces Neointimal Formation After Balloon Injury in Rats and Rabbits

TL;DR: Systemic inactivation and depletion of monocytes and macrophages by LC reduce neointimal hyperplasia and restenosis and play a pivotal role in vascular repair after mechanical arterial injury.
Related Papers (5)