scispace - formally typeset
Open AccessJournal ArticleDOI

Dipy, a library for the analysis of diffusion MRI data

Reads0
Chats0
TLDR
Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface, and has implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography.
Abstract
Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The challenge of mapping the human connectome based on diffusion tractography

Klaus H. Maier-Hein, +76 more
TL;DR: The encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent) is reported, however, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups.
Journal ArticleDOI

Harmonization of multi-site diffusion tensor imaging data.

TL;DR: It is shown that the DTI measurements are highly site‐specific, highlighting the need of correcting for site effects before performing downstream statistical analyses, and that ComBat, a popular batch‐effect correction tool used in genomics, performs best at modeling and removing the unwanted inter‐site variability in FA and MD maps.
Journal ArticleDOI

TractSeg - Fast and accurate white matter tract segmentation

TL;DR: TractSeg is a novel convolutional neural network‐based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation, and is demonstrated to be much faster than existing methods while providing unprecedented accuracy.
Journal ArticleDOI

Towards quantitative connectivity analysis: reducing tractography biases.

TL;DR: It is shown that optimizing tractography parameters, stopping and seeding strategies can reduce the biases in position, shape, size and length of the streamline distribution, a critical step towards producing tractography results for quantitative structural connectivity analysis.
References
More filters
Journal ArticleDOI

Advances in functional and structural MR image analysis and implementation as FSL.

TL;DR: A review of the research carried out by the Analysis Group at the Oxford Centre for Functional MRI of the Brain (FMRIB) on the development of new methodologies for the analysis of both structural and functional magnetic resonance imaging data.
Journal ArticleDOI

The NumPy Array: A Structure for Efficient Numerical Computation

TL;DR: In this article, the authors show how to improve the performance of NumPy arrays through vectorizing calculations, avoiding copying data in memory, and minimizing operation counts, which is a technique similar to the one described in this paper.
Journal ArticleDOI

MR diffusion tensor spectroscopy and imaging.

TL;DR: Once Deff is estimated from a series of NMR pulsed-gradient, spin-echo experiments, a tissue's three orthotropic axes can be determined and the effective diffusivities along these orthotropic directions are the eigenvalues of Deff.
Journal ArticleDOI

The NumPy array: a structure for efficient numerical computation

TL;DR: This effort shows, NumPy performance can be improved through three techniques: vectorizing calculations, avoiding copying data in memory, and minimizing operation counts.
Related Papers (5)