scispace - formally typeset
Open AccessJournal ArticleDOI

Endothelial and perivascular cells maintain haematopoietic stem cells

Reads0
Chats0
TLDR
HSCs reside in a perivascular niche in which multiple cell types express factors that promote HSC maintenance, and were depleted from bone marrow when Scf was deleted from endothelial cells or leptin receptor (Lepr)-expressing periv vascular stromal cells.
Abstract
Several cell types have been proposed to create niches for haematopoietic stem cells (HSCs). However, the expression patterns of HSC maintenance factors have not been systematically studied and no such factor has been conditionally deleted from any candidate niche cell. Thus, the cellular sources of these factors are undetermined. Stem cell factor (SCF; also known as KITL) is a key niche component that maintains HSCs. Here, using Scf(gfp) knock-in mice, we found that Scf was primarily expressed by perivascular cells throughout the bone marrow. HSC frequency and function were not affected when Scf was conditionally deleted from haematopoietic cells, osteoblasts, nestin-cre- or nestin-creER-expressing cells. However, HSCs were depleted from bone marrow when Scf was deleted from endothelial cells or leptin receptor (Lepr)-expressing perivascular stromal cells. Most HSCs were lost when Scf was deleted from both endothelial and Lepr-expressing perivascular cells. Thus, HSCs reside in a perivascular niche in which multiple cell types express factors that promote HSC maintenance.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The bone marrow niche for haematopoietic stem cells

TL;DR: The haematopoietic stem cell niche remains incompletely defined and beset by competing models, and outstanding questions concern the cellular complexity of the niche, the role of the endosteum and functional heterogeneity among perivascular microenvironments.
Journal ArticleDOI

Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone

TL;DR: In this paper, the authors identify a new capillary subtype in the murine skeletal system with distinct morphological, molecular and functional properties, which mediate growth of the bone vasculature, generate distinct metabolic and molecular microenvironments, maintain perivascular osteoprogenitors and couple angiogenesis to osteogenesis.
Journal ArticleDOI

CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance

TL;DR: It is suggested that osterix-expressing stromal cells comprise a distinct niche that supports B-lymphoid progenitors and retains HPCs in the bone marrow, and that expression of CXCL12 from stroma cells in the perivascular region, including endothelial cells and mesenchymal progenitor, supports HSCs.
Journal ArticleDOI

Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches

TL;DR: Assessment of the physiological sources of the chemokine CXCL12 for HSC and restricted progenitor maintenance shows that Cxcl12 was primarily expressed by perivascular stromal cells and, at lower levels, by endothelial cells, osteoblasts and some haematopoietic cells.
Journal ArticleDOI

Extracellular matrix: A dynamic microenvironment for stem cell niche

TL;DR: Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior.
References
More filters
Journal ArticleDOI

Exploration, normalization, and summaries of high density oligonucleotide array probe level data

TL;DR: There is no obvious downside to using RMA and attaching a standard error (SE) to this quantity using a linear model which removes probe-specific affinities, and the exploratory data analyses of the probe level data motivate a new summary measure that is a robust multi-array average (RMA) of background-adjusted, normalized, and log-transformed PM values.
Journal ArticleDOI

Osteoblastic cells regulate the haematopoietic stem cell niche

TL;DR: Osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation.
Journal ArticleDOI

SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells

TL;DR: This work compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors and found that both groups occupied multiple niches, including sinusoidal endothelium in diverse tissues.
Journal ArticleDOI

Mesenchymal and haematopoietic stem cells form a unique bone marrow niche

TL;DR: It is demonstrated that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.
Journal ArticleDOI

Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus

TL;DR: In contrast to existing lacZ reporter lines, where lacZ expression cannot easily be detected in living tissue, the EYFP and ECFP reporter strains are useful for monitoring the expression of Cre and tracing the lineage of these cells and their descendants in cultured embryos or organs.
Related Papers (5)