scispace - formally typeset
Open AccessJournal ArticleDOI

Enzyme immobilisation in biocatalysis : Why, what and how

Roger A. Sheldon, +1 more
- 08 Jul 2013 - 
- Vol. 42, Iss: 15, pp 6223-6235
TLDR
An overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented and emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).
Abstract
In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Influence of reaction parameters in the polymerization between genipin and chitosan for enzyme immobilization

TL;DR: This research shows, for the first time, a complete study about the parameters that affect the support activation process and the possible structure formed between genipin and chitosan.
Journal ArticleDOI

Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings

TL;DR: In this article, the authors measured leaf chlorophyll fluorescence, antioxidative enzyme activities, organic acid contents, and Pb concentrations of P. crinitum grown in soil containing four concentrations of pb (0, 500, 1000, and 2500 ǫmg kg−1, respectively) for a period of three months.
Journal ArticleDOI

Biodiesel production from crude jatropha oil catalyzed by immobilized lipase/acyltransferase from Candida parapsilosis in aqueous medium.

TL;DR: The lipase/acyltransferase from Candida parapsilosis immobilized on two synthetic resins was used as catalyst for the production of biodiesel by transesterification of jatropha oil with methanol, in a lipid/aqueous system.
Journal ArticleDOI

Towards efficient chemical synthesis via engineering enzyme catalysis in biomimetic nanoreactors

TL;DR: Recent advances in mimicking the working environment and working patterns of intracellular enzymes in nanopores of mesoporous silica-based supports are summarized and it is demonstrated that incorporation of polymers into silica nanopores could be a valuable approach to create the biomimetic microenvironment for enzymes in the immobilized state.
Journal ArticleDOI

Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock

TL;DR: In this article, the optimal conditions for the enzymatic production of lactulose by β-galactosidase from Kluyveromyces lactis using cheese whey as feedstock were established.
References
More filters
Journal ArticleDOI

Engineering the third wave of biocatalysis

TL;DR: Applications of protein-engineered biocatalysts ranging from commodity chemicals to advanced pharmaceutical intermediates that use enzyme catalysis as a key step are discussed.
Journal ArticleDOI

Enzyme immobilization: The quest for optimum performance

TL;DR: Different methods for the immobilization of enzymes are critically reviewed, with emphasis on relatively recent developments, such as the use of novel supports, e.g., mesoporous silicas, hydrogels, and smart polymers, novel entrapment methods and cross-linked enzyme aggregates (CLEAs).
Journal ArticleDOI

Chemistry of Aerogels and Their Applications

TL;DR: Aerogels form a new class of solids showing sophisticated potentialities for a range of applications, and can develop very attractive physical and chemical properties not achievable by other means of low temperature soft chemical synthesis.
Journal ArticleDOI

Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance

TL;DR: The advantages and disadvantages of the different existing immobilization strategies to solve the different aforementioned enzyme limitations are given and some advice to select the optimal strategy for each particular enzyme and process is given.
Journal ArticleDOI

Application of chitin- and chitosan-based materials for enzyme immobilizations: a review

TL;DR: A review of the literature on enzymes immobilized on chitin- and chitosan-based materials, covering the last decade, is presented in this paper, where one hundred fifty-eight papers on 63 immobilized enzymes for multiplicity of applications ranging from wine, sugar and fish industry, through organic compounds removal from wastewaters to sophisticated biosensors for both in situ measurements of environmental pollutants and metabolite control in artificial organs, are reviewed.
Related Papers (5)