scispace - formally typeset
Open AccessJournal ArticleDOI

Enzyme immobilisation in biocatalysis : Why, what and how

Roger A. Sheldon, +1 more
- 08 Jul 2013 - 
- Vol. 42, Iss: 15, pp 6223-6235
TLDR
An overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented and emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).
Abstract
In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

How Corona Formation Impacts Nanomaterials as Drug Carriers.

TL;DR: This overview is an attempt to critically assess the understanding of corona formation and to outline the complexities involved in gaining precise information.
Journal ArticleDOI

Synthesis and characterization of cross-linked enzyme aggregates (CLEAs) of thermostable xylanase from Geobacillus thermodenitrificans X1

TL;DR: CLEAs of xylanase proved to be commercially reliable as they retained 53.5% activity after being reused till six cycles and 86%Activity after storage at 4 °Cfor 8 weeks.
Journal ArticleDOI

3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene

TL;DR: In this article, the authors report on the characterization of four different cofactor-free phenacrylate decarboxylase enzymes suitable for the production of 4-vinylphenol and test their applicability for the encapsulation and direct 3D printing of disk-shaped agarose-based modules that can be used for compartmentalized flow microreactors.
Journal ArticleDOI

Efficient enzyme-assisted extraction of genipin from genipap (Genipa americana L.) and its application as a crosslinker for chitosan gels.

TL;DR: The genipin obtained in this work proved to be an excellent alternative to the use of glutaraldehyde in chitosan crosslinking applications and was applied for the first time in liquid-liquid two-phase aqueous system.
Journal ArticleDOI

α-Amylase immobilization onto functionalized graphene nanosheets as scaffolds: Its characterization, kinetics and potential applications in starch based industries.

TL;DR: In this article, the authors used functionalized graphene sheets as a scaffold for α-amylase immobilization using Response Surface Methodology based on Box-Behnken design, with an overall immobilization efficiency of 85.16%.
References
More filters
Journal ArticleDOI

Engineering the third wave of biocatalysis

TL;DR: Applications of protein-engineered biocatalysts ranging from commodity chemicals to advanced pharmaceutical intermediates that use enzyme catalysis as a key step are discussed.
Journal ArticleDOI

Enzyme immobilization: The quest for optimum performance

TL;DR: Different methods for the immobilization of enzymes are critically reviewed, with emphasis on relatively recent developments, such as the use of novel supports, e.g., mesoporous silicas, hydrogels, and smart polymers, novel entrapment methods and cross-linked enzyme aggregates (CLEAs).
Journal ArticleDOI

Chemistry of Aerogels and Their Applications

TL;DR: Aerogels form a new class of solids showing sophisticated potentialities for a range of applications, and can develop very attractive physical and chemical properties not achievable by other means of low temperature soft chemical synthesis.
Journal ArticleDOI

Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance

TL;DR: The advantages and disadvantages of the different existing immobilization strategies to solve the different aforementioned enzyme limitations are given and some advice to select the optimal strategy for each particular enzyme and process is given.
Journal ArticleDOI

Application of chitin- and chitosan-based materials for enzyme immobilizations: a review

TL;DR: A review of the literature on enzymes immobilized on chitin- and chitosan-based materials, covering the last decade, is presented in this paper, where one hundred fifty-eight papers on 63 immobilized enzymes for multiplicity of applications ranging from wine, sugar and fish industry, through organic compounds removal from wastewaters to sophisticated biosensors for both in situ measurements of environmental pollutants and metabolite control in artificial organs, are reviewed.
Related Papers (5)