scispace - formally typeset
Open AccessJournal ArticleDOI

Enzyme immobilisation in biocatalysis : Why, what and how

Roger A. Sheldon, +1 more
- 08 Jul 2013 - 
- Vol. 42, Iss: 15, pp 6223-6235
TLDR
An overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented and emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).
Abstract
In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Advances in laccase-triggered anabolism for biotechnology applications

TL;DR: This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling and improves the enzymatic catalytic activity, stability, and reuse rate.
Journal ArticleDOI

EDTA-Cu (II) chelating magnetic nanoparticles as a support for laccase immobilization

TL;DR: These magnetic nanoparticles prepared by functionalization with EDTA-TMS and characterized by TEM, FTIR and BET analytical techniques showed important advantages compared to other materials for application in industrial biochemical processes, biocatalysis and biosensing.
Journal ArticleDOI

Tunable thermo-responsive hydrogels: Synthesis, structural analysis and drug release studies

TL;DR: The mesh size rapidly changed from a collapsed to a swollen state, with beneficial effects in applications such as size-selective permeation or controlled drug delivery, while the crosslinking degree, the film thickness, and the loading method deeply influenced the drug release profiles at 25 and 40°C.
Journal ArticleDOI

Metal–organic frameworks (MOFs): a novel support platform for ASNase immobilization

TL;DR: In this paper, the authors used metal-organic frameworks (MOFs) for the efficient immobilization of l-asparaginase (ASNase, EC 3.1) by using MOF as a simple and novel support.
Journal ArticleDOI

Gelatin/Maltodextrin Water-in-Water (W/W) Emulsions for the Preparation of Cross-Linked Enzyme-Loaded Microgels.

TL;DR: The stability of the enzyme at 37 °C under gastric and neutral pH conditions was tested and led to the conclusion that the cross-linked microgels could be suitable for use in food-industry, where β-Gal carriers are of interest for hydrolyzing lactose in milk products.
References
More filters
Journal ArticleDOI

Engineering the third wave of biocatalysis

TL;DR: Applications of protein-engineered biocatalysts ranging from commodity chemicals to advanced pharmaceutical intermediates that use enzyme catalysis as a key step are discussed.
Journal ArticleDOI

Enzyme immobilization: The quest for optimum performance

TL;DR: Different methods for the immobilization of enzymes are critically reviewed, with emphasis on relatively recent developments, such as the use of novel supports, e.g., mesoporous silicas, hydrogels, and smart polymers, novel entrapment methods and cross-linked enzyme aggregates (CLEAs).
Journal ArticleDOI

Chemistry of Aerogels and Their Applications

TL;DR: Aerogels form a new class of solids showing sophisticated potentialities for a range of applications, and can develop very attractive physical and chemical properties not achievable by other means of low temperature soft chemical synthesis.
Journal ArticleDOI

Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance

TL;DR: The advantages and disadvantages of the different existing immobilization strategies to solve the different aforementioned enzyme limitations are given and some advice to select the optimal strategy for each particular enzyme and process is given.
Journal ArticleDOI

Application of chitin- and chitosan-based materials for enzyme immobilizations: a review

TL;DR: A review of the literature on enzymes immobilized on chitin- and chitosan-based materials, covering the last decade, is presented in this paper, where one hundred fifty-eight papers on 63 immobilized enzymes for multiplicity of applications ranging from wine, sugar and fish industry, through organic compounds removal from wastewaters to sophisticated biosensors for both in situ measurements of environmental pollutants and metabolite control in artificial organs, are reviewed.
Related Papers (5)