scispace - formally typeset
Open AccessJournal ArticleDOI

Enzyme immobilisation in biocatalysis : Why, what and how

Roger A. Sheldon, +1 more
- 08 Jul 2013 - 
- Vol. 42, Iss: 15, pp 6223-6235
TLDR
An overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented and emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).
Abstract
In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Efficient and Stable Magnetic Chitosan-Lipase B from Candida Antarctica Bioconjugates in the Enzymatic Kinetic Resolution of Racemic Heteroarylethanols.

TL;DR: Lipase B from Candida antarctica immobilized by covalent binding on sebacoyl-activated chitosan-coated magnetic nanoparticles proved to be an efficient biocatalyst for the enzymatic kinetic resolution of some racemic heteroarylethanols through transesterification with vinyl acetate.
Journal ArticleDOI

Magneto-thermally responsive hydrogels for bladder cancer treatment: Therapeutic efficacy and in vivo biodistribution.

TL;DR: The in vitro efficacy investigated on bladder cancer (T-24) cell lines showed the potential of the system in dealing with the disease successfully and the materials preferential accumulation via systemic delivery was studied using swiss mice model.
Journal ArticleDOI

The response surface methodology for optimization of tyrosinase immobilization onto electrospun polycaprolactone-chitosan fibers for use in bisphenol A removal.

TL;DR: Experimental data collected proved that the stability and reusability of the tyrosinase were significantly improved upon immobilization: the immobilized biomolecule retained around 90% of its initial activity after 30 days of storage, and was still capable to remove over 80% of bisphenol A even after 10 repeated uses.
Journal ArticleDOI

A novel framework for the cell-free enzymatic production of glucaric acid.

TL;DR: A cell-free GlucA pathway is constructed and a novel framework to overcome limitations ofcell-free biocatalysis is demonstrated by the combination of both thermostable and mesophilic enzymes, and the highest productivities so far reported for glucaric acid production using a synthetic enzyme pathway are demonstrated.
Journal ArticleDOI

Nano-magnetic cross-linked enzyme aggregates of naringinase an efficient nanobiocatalyst for naringin hydrolysis.

TL;DR: The NM-NGase-CLEAs are thermo-stable, reusable, and efficient nanobiocatalyst for debittering of citrus juices and proposes strong operational stability.
References
More filters
Journal ArticleDOI

Engineering the third wave of biocatalysis

TL;DR: Applications of protein-engineered biocatalysts ranging from commodity chemicals to advanced pharmaceutical intermediates that use enzyme catalysis as a key step are discussed.
Journal ArticleDOI

Enzyme immobilization: The quest for optimum performance

TL;DR: Different methods for the immobilization of enzymes are critically reviewed, with emphasis on relatively recent developments, such as the use of novel supports, e.g., mesoporous silicas, hydrogels, and smart polymers, novel entrapment methods and cross-linked enzyme aggregates (CLEAs).
Journal ArticleDOI

Chemistry of Aerogels and Their Applications

TL;DR: Aerogels form a new class of solids showing sophisticated potentialities for a range of applications, and can develop very attractive physical and chemical properties not achievable by other means of low temperature soft chemical synthesis.
Journal ArticleDOI

Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance

TL;DR: The advantages and disadvantages of the different existing immobilization strategies to solve the different aforementioned enzyme limitations are given and some advice to select the optimal strategy for each particular enzyme and process is given.
Journal ArticleDOI

Application of chitin- and chitosan-based materials for enzyme immobilizations: a review

TL;DR: A review of the literature on enzymes immobilized on chitin- and chitosan-based materials, covering the last decade, is presented in this paper, where one hundred fifty-eight papers on 63 immobilized enzymes for multiplicity of applications ranging from wine, sugar and fish industry, through organic compounds removal from wastewaters to sophisticated biosensors for both in situ measurements of environmental pollutants and metabolite control in artificial organs, are reviewed.
Related Papers (5)