scispace - formally typeset
Open AccessJournal ArticleDOI

Exploring the Magnetoelectric Coupling at the Composite Interfaces of FE/FM/FE Heterostructures.

Reads0
Chats0
TLDR
The ferroelectric, magnetic and ME properties of PFN/NZFO/PFN trilayer nanoscale heterostructure are reported, revealing them as potential candidates for nanoscales multifunctional and spintronics device applications.
Abstract
Multiferroic materials have attracted considerable attention as possible candidates for a wide variety of future microelectronic and memory devices, although robust magnetoelectric (ME) coupling between electric and magnetic orders at room temperature still remains difficult to achieve. In order to obtain robust ME coupling at room temperature, we studied the Pb(Fe0.5Nb0.5)O3/Ni0.65Zn0.35Fe2O4/Pb(Fe0.5Nb0.5)O3 (PFN/NZFO/PFN) trilayer structure as a representative FE/FM/FE system. We report the ferroelectric, magnetic and ME properties of PFN/NZFO/PFN trilayer nanoscale heterostructure having dimensions 70/20/70 nm, at room temperature. The presence of only (00l) reflection of PFN and NZFO in the X-ray diffraction (XRD) patterns and electron diffraction patterns in Transmission Electron Microscopy (TEM) confirm the epitaxial growth of multilayer heterostructure. The distribution of the ferroelectric loop area in a wide area has been studied, suggesting that spatial variability of ferroelectric switching behavior is low, and film growth is of high quality. The ferroelectric and magnetic phase transitions of these heterostructures have been found at ~575 K and ~650 K, respectively which are well above room temperature. These nanostructures exhibit low loss tangent, large saturation polarization (Ps ~ 38 µC/cm2) and magnetization (Ms ~ 48 emu/cm3) with strong ME coupling at room temperature revealing them as potential candidates for nanoscale multifunctional and spintronics device applications.

read more

Citations
More filters
Journal ArticleDOI

Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan

TL;DR: In this paper, a survey of 1232 wheat growers from Pakistan, conducted in April and May of 2019, was used to estimate the production risk of wheat farms to weather shocks and the effectiveness of physical, non-physical, and innovative management strategies for reducing crop damages.
Journal ArticleDOI

A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics.

TL;DR: NETosis is described in different diseases focusing on the detrimental effect of NETs and possible therapeutics that can be used to mitigate netosis are outlined, thereby decreasing damage to patients.
Journal ArticleDOI

Materials, Actuators, and Sensors for Soft Bioinspired Robots

TL;DR: A review of advances in bio-inspired soft actuators and sensors with a focus on the progress between 2017 and 2020 is presented in this article, providing a primer for the materials used in their design.
Journal ArticleDOI

Validation of COI metabarcoding primers for terrestrial arthropods

TL;DR: This study reveals the weak performance of some primer sets employed in past studies and demonstrates that certain primer sets can recover most taxa in a diverse species assemblage, and identifies several suitable primer sets for arthropod metabarcoding.
References
More filters
Journal ArticleDOI

Multiferroic and magnetoelectric materials

TL;DR: A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements that arises through the quantum mechanical phenomenon of exchange.
Book

Introduction to Magnetic Materials

TL;DR: In this paper, the authors present materials at the practical rather than theoretical level, allowing for a physical, quantitative, measurement-based understanding of magnetism among readers, be they professional engineers or graduate-level students.
Journal ArticleDOI

Epitaxial BiFeO3 multiferroic thin film heterostructures.

TL;DR: Enhanced polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.
Journal ArticleDOI

Revival of the Magnetoelectric Effect

Abstract: Recent research activities on the linear magnetoelectric (ME) effect?induction of magnetization by an electric field or of polarization by a magnetic field?are reviewed. Beginning with a brief summary of the history of the ME effect since its prediction in 1894, the paper focuses on the present revival of the effect. Two major sources for 'large' ME effects are identified. (i) In composite materials the ME effect is generated as a product property of a magnetostrictive and a piezoelectric compound. A linear ME polarization is induced by a weak ac magnetic field oscillating in the presence of a strong dc bias field. The ME effect is large if the ME coefficient coupling the magnetic and electric fields is large. Experiments on sintered granular composites and on laminated layers of the constituents as well as theories on the interaction between the constituents are described. In the vicinity of electromechanical resonances a ME voltage coefficient of up to 90?V?cm?1?Oe?1 is achieved, which exceeds the ME response of single-phase compounds by 3?5 orders of magnitude. Microwave devices, sensors, transducers and heterogeneous read/write devices are among the suggested technical implementations of the composite ME effect. (ii) In multiferroics the internal magnetic and/or electric fields are enhanced by the presence of multiple long-range ordering. The ME effect is strong enough to trigger magnetic or electrical phase transitions. ME effects in multiferroics are thus 'large' if the corresponding contribution to the free energy is large. Clamped ME switching of electrical and magnetic domains, ferroelectric reorientation induced by applied magnetic fields and induction of ferromagnetic ordering in applied electric fields were observed. Mechanisms favouring multiferroicity are summarized, and multiferroics in reduced dimensions are discussed. In addition to composites and multiferroics, novel and exotic manifestations of ME behaviour are investigated. This includes (i) optical second harmonic generation as a tool to study magnetic, electrical and ME properties in one setup and with access to domain structures; (ii) ME effects in colossal magnetoresistive manganites, superconductors and phosphates of the LiMPO4 type; (iii) the concept of the toroidal moment as manifestation of a ME dipole moment; (iv) pronounced ME effects in photonic crystals with a possibility of electromagnetic unidirectionality. The review concludes with a summary and an outlook to the future development of magnetoelectrics research.
Journal ArticleDOI

Why Are There so Few Magnetic Ferroelectrics

TL;DR: In this paper, the fundamental physics behind the scarcity of ferromagnetic ferroelectric coexistence was explored and the properties of known magnetically ordered ferro-electric materials were examined.
Related Papers (5)