scispace - formally typeset
Open AccessJournal ArticleDOI

Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model.

Reads0
Chats0
TLDR
Results indicate that IL-5 and eosinophils are central mediators in the pathogenesis of allergic lung disease.
Abstract
Airways inflammation is thought to play a central role in the pathogenesis of asthma. However, the precise role that individual inflammatory cells and mediators play in the development of airways hyperreactivity and the morphological changes of the lung during allergic pulmonary inflammation is unknown. In this investigation we have used a mouse model of allergic pulmonary inflammation and interleukin (IL) 5-deficient mice to establish the essential role of this cytokine and eosinophils in the initiation of aeroallergen-induced lung damage and the development of airways hyperreactivity. Sensitization and aerosol challenge of mice with ovalbumin results in airways eosinophilia and extensive lung damage analogous to that seen in asthma. Aeroallergen-challenged mice also display airways hyperreactivity to beta-methacholine. In IL-5-deficient mice, the eosinophilia, lung damage, and airways hyperreactivity normally resulting from aeroallergen challenge were abolished. Reconstitution of IL-5 production with recombinant vaccinia viruses engineered to express this factor completely restored aeroallergen-induced eosinophilia and airways dysfunction. These results indicate that IL-5 and eosinophils are central mediators in the pathogenesis of allergic lung disease.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

The role of allergy in the development of asthma [Review]

TL;DR: This review summarizes recent findings on the nature of the cellular and molecular mechanisms underlying this process, and addresses the issue of why the intensity and duration of these tissue-damaging responses in the airway wall apparently exceeds the critical threshold required for development of persistent asthma in only a minority of allergy sufferers.
Journal ArticleDOI

Engineered in vitro disease models.

TL;DR: E engineered in vitro models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer are provided.
Journal ArticleDOI

Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors.

TL;DR: Blockade of eotaxin with specific antibodies in vivo reduced the accumulation of eosinophils in the lung in response to OVA by half, and mice genetically deficient for VCAM-1 and intercellular adhesion molecule-1 failed to develop pulmonary eOSinophilia.
Journal ArticleDOI

Diesel Exhaust Particles Enhance Antigen-induced Airway Inflammation and Local Cytokine Expression in Mice

TL;DR: The effects of DEP inoculated intratracheally on antigen-induced airway inflammation, local expression of cytokine proteins, and antigen-specific immunoglobulin production in mice are investigated for the first experimental evidence that DEP can enhance the manifestations of allergic asthma.
References
More filters
Journal ArticleDOI

Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma

TL;DR: Atopic asthma is associated with activation in the bronchi of the interleukin-3, 4, and 5 and GM-CSF gene cluster, a pattern compatible with predominant activation of the TH2-like T-cell population.
Journal ArticleDOI

Cellular events in the bronchi in mild asthma and after bronchial provocation.

TL;DR: It is concluded that allergic asthma is accompanied by extensive inflammatory changes in the airways, even in mild clinical and subclinical disease.
Journal ArticleDOI

Macrophages and polymorphonuclear neutrophils in lung defense and injury

TL;DR: Alveolar macrophages are part of the regulatory mechanisms of PMN mobility and adherence that appears to be crucial in the initiation of some inflammatory reactions, and this supports a central role for alveolarmacrophages in the regulation of PMn traffic in the lungs.
Journal ArticleDOI

Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions.

TL;DR: Bronchoalveolar lavage was performed in 19 asthmatic patients and in 5 control subjects to suggest that eosinophils and their mediators might be involved in the development of LAR after allergen inhalation.
Journal ArticleDOI

Recombinant human interleukin 5 is a selective activator of human eosinophil function.

TL;DR: Human rIL-5 was found to selectively stimulate morphological changes and the function of human eosinophils, and is thus a prime candidate for the selective eOSinophilia and eos inophil activation seen in disease.
Related Papers (5)