scispace - formally typeset
Open AccessJournal ArticleDOI

Mechanical strain induces E-cadherin–dependent Yap1 and β-catenin activation to drive cell cycle entry

Reads0
Chats0
TLDR
It is shown that mechanical strain applied to quiescent epithelial cells induced rapid cell cycle reentry, mediated by independent nuclear accumulation and transcriptional activity of first Yap1 and then β-catenin, and cadherins provide signaling centers required for cellular responses to externally applied force.
Abstract
Mechanical strain regulates the development, organization, and function of multicellular tissues, but mechanisms linking mechanical strain and cell-cell junction proteins to cellular responses are poorly understood. Here, we showed that mechanical strain applied to quiescent epithelial cells induced rapid cell cycle reentry, mediated by independent nuclear accumulation and transcriptional activity of first Yap1 and then β-catenin. Inhibition of Yap1- and β-catenin-mediated transcription blocked cell cycle reentry and progression through G1 into S phase, respectively. Maintenance of quiescence, Yap1 nuclear exclusion, and β-catenin transcriptional responses to mechanical strain required E-cadherin extracellular engagement. Thus, activation of Yap1 and β-catenin may represent a master regulator of mechanical strain-induced cell proliferation, and cadherins provide signaling centers required for cellular responses to externally applied force.

read more

Citations
More filters
Journal ArticleDOI

Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer.

TL;DR: The Hippo pathway regulates cell proliferation, apoptosis, and stemness in response to a wide range of extracellular and intracellular signals, including cell-cell contact, cell polarity, mechanical cues, ligands of G-protein-coupled receptors, and cellular energy status.
Journal ArticleDOI

YAP/TAZ at the Roots of Cancer

TL;DR: In this paper, a number of cancer-associated extrinsic and intrinsic cues conspire to overrule the YAP-inhibiting microenvironment of normal tissues, including changes in mechanotransduction, inflammation, oncogenic signaling, and regulation of the Hippo pathway.
Journal ArticleDOI

Mechanobiology of YAP and TAZ in physiology and disease

TL;DR: YAP and TAZ mechanotransduction is critical for driving stem cell behaviour and regeneration, and it sheds new light on the mechanisms by which aberrant cell mechanics is instrumental for the onset of multiple diseases, such as atherosclerosis, fibrosis, pulmonary hypertension, inflammation, muscular dystrophy and cancer.
Journal ArticleDOI

YAP/TAZ upstream signals and downstream responses

TL;DR: How the transcriptional regulators YAP and TAZ integrate mechanical cues with the response to soluble signals and metabolic pathways to control multiple aspects of cell behaviour, including proliferation, cell plasticity and stemness essential for tissue regeneration is reviewed.
References
More filters
Journal ArticleDOI

Matrix elasticity directs stem cell lineage specification.

TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.
Journal ArticleDOI

Role of YAP/TAZ in mechanotransduction

TL;DR: YAP/TAZ are identified as sensors and mediators of mechanical cues instructed by the cellular microenvironment and are functionally required for differentiation of mesenchymal stem cells induced by ECM stiffness and for survival of endothelial cells regulated by cell geometry.
Journal ArticleDOI

β‐catenin is a target for the ubiquitin–proteasome pathway

TL;DR: It is shown that ubiquitination of β‐catenin is greatly reduced in Wnt‐expressing cells, providing the first evidence that the ubiquitin–proteasome degradation pathway may act downstream of GSK3β in the regulation ofβ‐ catenin.
Journal ArticleDOI

Convergence of Wnt, ß-Catenin, and Cadherin Pathways

TL;DR: Evidence is assembled of possible interrelations between Wnt and other growth factor signaling, β-catenin functions, and cadherin-mediated adhesion in tissue differentiation.
Journal ArticleDOI

Elucidation of a universal size-control mechanism in Drosophila and mammals.

TL;DR: It is demonstrated that a single phosphorylation site in Yki mediates the growth-suppressive output of the Hippo pathway, and that its dysregulation leads to tumorigenesis, uncovering a universal size-control mechanism in metazoan.
Related Papers (5)