scispace - formally typeset
Open AccessJournal ArticleDOI

Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes

TLDR
In this article, the authors presented a multi-model global dataset of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP).
Abstract
. We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr−1 from nitrogen oxide emissions, 60 Tg(N) yr−1 from ammonia emissions, and 83 Tg(S) yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N) m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new ACCMIP multi-model deposition dataset provides state-of-the-science, consistent and evaluated time slice (spanning 1850–2100) global gridded deposition fields for use in a wide range of climate and ecological studies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

TL;DR: In this article, the LPJ-GUESS dynamic vegetation model was extended to include plant and soil N dynamics, and the implications of accounting for C-N interactions on predictions and performance of the model were analyzed.
Journal ArticleDOI

Increased vegetation growth and carbon stock in China karst via ecological engineering

TL;DR: In this article, the authors use satellite time series data and show a widespread increase in leaf area index (a proxy for green vegetation cover), and aboveground biomass carbon, which contrasted negative trends found in the absence of anthropogenic influence as simulated by an ecosystem model.
Journal ArticleDOI

Assessing the impacts of 1.5 °C global warming - simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

Katja Frieler, +60 more
TL;DR: In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Concerning on Climate Change (UNFCCC) invited the Inter- governmental Panel on Climate change (IPCC).
Journal ArticleDOI

Air quality and climate connections.

TL;DR: Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM.
Journal ArticleDOI

Role of forest regrowth in global carbon sink dynamics

TL;DR: The results confirm that it is not possible to understand the current global terrestrial carbon sink without accounting for the sizeable sink due to forest demography, and imply that a large portion of the current terrestrialcarbon sink is strictly transient in nature.
References
More filters
Journal ArticleDOI

An Overview of CMIP5 and the Experiment Design

TL;DR: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance the authors' knowledge of climate variability and climate change.
Journal ArticleDOI

Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs

TL;DR: In this article, the authors constructed a 2.5° latitude-longitude grid for the 17-yr period from 1979 to 1995 by merging several kinds of information sources with different characteristics, including gauge observations, estimates inferred from a variety of satellite observations, and the NCEP-NCAR reanalysis.
Related Papers (5)