scispace - formally typeset
Open AccessPosted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph, +1 more
- 05 Nov 2016 - 
TLDR
This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract
Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.

read more

Citations
More filters
Proceedings ArticleDOI

Application of Modified Inception-ResNet and CondenseNet in Lung Nodule Classification

Jingzhi Fu
TL;DR: Results of the experiment prove good performance of CNNs in lung nodule CT scans classification and introduce self-mechanism and 3D convolution can significantly improve network’s accuracy.
Posted Content

Structural Watermarking to Deep Neural Networks via Network Channel Pruning.

TL;DR: In this paper, the authors proposed a structural watermarking scheme that utilizes channel pruning to embed the watermark into the host DNN architecture instead of crafting the DNN parameters.
Proceedings ArticleDOI

Optimize CNN Model for FMRI Signal Classification Via Adanet-Based Neural Architecture Search

TL;DR: The core idea is that AdaNet adaptively learns both the optimal structure of the CNN network and its weights so that the learnt CNN model can effectively extract discriminative features that maximize the classification accuracies of three classes of 3-hinge gyral, 2-hingE gyral and sulcal fMRI signals.
Journal ArticleDOI

Neural Network Structure Optimization by Simulated Annealing

TL;DR: Simulation results have shown that simulated annealing can significantly reduce the complexity of a fully connected network while maintaining the performance without the help of back-propagation.
Journal ArticleDOI

Depth Classification of Defects Based on Neural Architecture Search

TL;DR: In this article, the authors explored the application of neural architecture search (NAS) in infrared thermography area for the first time and compared different time-series temperature features of defect locations in infrared images and validated the performance of three different features such as heating, cooling and full process by machine learning methods.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Histograms of oriented gradients for human detection

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.