scispace - formally typeset
Journal ArticleDOI

Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays

TLDR
A sensor matrix is realized that detects the spatial distribution of applied mechanical pressure and stores the analog sensor input as a two-dimensional image over long periods of time by integrating a flexible array of organic floating-gate transistors with a pressure-sensitive rubber sheet.
Abstract
Using organic transistors with a floating gate embedded in hybrid dielectrics that comprise a 2-nanometer-thick molecular self-assembled monolayer and a 4-nanometer-thick plasma-grown metal oxide, we have realized nonvolatile memory arrays on flexible plastic substrates. The small thickness of the dielectrics allows very small program and erase voltages (≤6 volts) to produce a large, nonvolatile, reversible threshold-voltage shift. The transistors endure more than 1000 program and erase cycles, which is within two orders of magnitude of silicon-based floating-gate transistors widely employed in flash memory. By integrating a flexible array of organic floating-gate transistors with a pressure-sensitive rubber sheet, we have realized a sensor matrix that detects the spatial distribution of applied mechanical pressure and stores the analog sensor input as a two-dimensional image over long periods of time.

read more

Citations
More filters
Journal ArticleDOI

Advances of flexible pressure sensors toward artificial intelligence and health care applications

TL;DR: This review focuses on the fundamentals of flexible pressure sensors, and subsequently on several critical concepts for the exploration of functional materials and optimization of sensing devices toward practical applications.
Journal ArticleDOI

Two dimensional nanomaterials for flexible supercapacitors.

TL;DR: This review article surveys the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors.
Journal ArticleDOI

Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging

TL;DR: Large-array three-dimensional circuitry integration of piezotronic transistors based on vertical zinc oxide nanowires as an active taxel-addressable pressure/force sensor matrix for tactile imaging and self-powered, multidimensional active sensing is reported.
Journal ArticleDOI

Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins

TL;DR: A design of flexible electronic skins based on composite elastomer films that contain interlocked microdome arrays and display giant tunneling piezoresistance are introduced and it is shown that the sensors can sensitively monitor human breathing flows and voice vibrations, highlighting their potential use in wearable human-health monitoring systems.
Journal ArticleDOI

Recent Progress in Electronic Skin.

TL;DR: To imitate tactile sensing via e‐skins, flexible and stretchable pressure sensor arrays are constructed based on different transduction mechanisms and structural designs that can map pressure with high resolution and rapid response beyond that of human perception.
References
More filters
Journal ArticleDOI

Flexible active-matrix displays and shift registers based on solution-processed organic transistors.

TL;DR: Flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-μm-thick polyimide substrates based on 1,888 transistors are demonstrated, which are the largest organic integrated circuits reported to date.
Journal ArticleDOI

Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes

TL;DR: This work has successfully developed conformable, flexible, large-area networks of thermal and pressure sensors based on an organic semiconductor, and, by means of laminated sensor networks, the distributions of pressure and temperature are simultaneously obtained.
Journal ArticleDOI

Ultralow-power organic complementary circuits

TL;DR: This work demonstrates an organic circuit with very low power consumption that uses a self-assembled monolayer gate dielectric and two different air-stable molecular semiconductors (pentacene and hexadecafluorocopperphthalocyanine, F16CuPc) to implement transistors, circuits, displays and sensors on arbitrary substrates.
Journal ArticleDOI

Introduction to flash memory

TL;DR: The main reliability issues, such as charge retention and endurance, are discussed, together with an understanding of the basic physical mechanisms responsible and an insight into the multilevel approach, where two bits are stored in the same cell, is presented.
Journal ArticleDOI

High-performance solution-processed polymer ferroelectric field-effect transistors

TL;DR: In this paper, a non-volatile memory device with flexible plastic active layers deposited from solution is presented, and the memory device is a ferroelectric field effect transistor (FeFET) made with a Ferroelectric fluoropolymer and a bisalkoxy-substituted poly(pphenylene vinylene) semiconductor material.
Related Papers (5)