scispace - formally typeset

Journal ArticleDOI

Predicting marine phytoplankton community size structure from empirical relationships with remotely sensed variables

01 Jan 2011-Journal of Plankton Research (Oxford University Press)-Vol. 33, Iss: 1, pp 13-24

AbstractThe size composition of primary producers has a potential influence on the length of marine food chains and carbon sinking rates, thus on the proportion of primary production (PP) that is removed from the upper layers and available to higher trophic levels. While total rates of PP are widely reported, it is also necessary to account for the size composition of primary producers when developing food web models that predict consumer biomass and production. Empirical measurement of size composition over large space and time scales is not feasible, so one approach is to predict size composition from environmental variables that are measured and reported on relevant scales. Here, we describe relationships between the environment and the size composition of phytoplankton communities, using a collation of empirical measurements of size composition from sites that include polar, tropical and upwelling environments. The size composition of the phytoplankton communities can be predicted using two remotely sensed variables, chlorophyll-a concentration and sea surface temperature. Applying such relationships in combination allows prediction of the slope and location of phytoplankton size spectra and estimation of the percentage of different sized phytoplankton groups in communities.

Topics: Upwelling (56%), Biomass (ecology) (53%), Phytoplankton (52%), Primary producers (51%), Food chain (50%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
Abstract: Expansion in the world's human population and economic development will increase future demand for fish products. As global fisheries yield is constrained by ecosystems productivity and management effectiveness, per capita fish consumption can only be maintained or increased if aquaculture makes an increasing contribution to the volume and stability of global fish supplies. Here, we use predictions of changes in global and regional climate (according to IPCC emissions scenario A1B), marine ecosystem and fisheries production estimates from high resolution regional models, human population size estimates from United Nations prospects, fishmeal and oil price estimations, and projections of the technological development in aquaculture feed technology, to investigate the feasibility of sustaining current and increased per capita fish consumption rates in 2050. We conclude that meeting current and larger consumption rates is feasible, despite a growing population and the impacts of climate change on potential fisheries production, but only if fish resources are managed sustainably and the animal feeds industry reduces its reliance on wild fish. Ineffective fisheries management and rising fishmeal prices driven by greater demand could, however, compromise future aquaculture production and the availability of fish products.

333 citations


Cites background or methods from "Predicting marine phytoplankton com..."

  • ...We estimated a from the total biomass density of phytoplankton and microzooplankton groups from ERSEM output and convert this to numerical density across a realistic size range (10 14 to 10 4 g) assuming a fixed slope b of 1, in keeping with global empirical studies of phytoplankton size spectra (Barnes et al., 2011)....

    [...]

  • ...…the total biomass density of phytoplankton and microzooplankton groups from ERSEM output and convert this to numerical density across a realistic size range (10 14 to 10 4 g) assuming a fixed slope b of 1, in keeping with global empirical studies of phytoplankton size spectra (Barnes et al., 2011)....

    [...]


Journal ArticleDOI
TL;DR: Five existing methods that address the needs of monitoring and assessment of marine ecosystems are reviewed, highlighting their main characteristics and analyzing their commonalities and differences.
Abstract: Traditional and emerging human activities are increasingly putting pressures on marine ecosystems and impacting their ability to sustain ecological and human communities. To evaluate the health status of marine ecosystems we need a science-based, integrated Ecosystem Approach, that incorporates knowledge of ecosystem function and services provided that can be used to track how management decisions change the health of marine ecosystems. Although many methods have been developed to assess the status of single components of the ecosystem, few exist for assessing multiple ecosystem components in a holistic way. To undertake such an integrative assessment, it is necessary to understand the response of marine systems to human pressures. Hence, innovative monitoring is needed to obtain data to determine the health of large marine areas, and in an holistic way. Here we review five existing methods that address both of these needs (monitoring and assessment): the Ecosystem Health Assessment Tool; a method for the Marine Strategy Framework Directive in the Bay of Biscay; the Ocean Health Index; the Marine Biodiversity Assessment Tool; and the Nested Environmental status Assessment Tool. We have highlighted their main characteristics and analyzing their commonalities and differences, in terms of: use of the Ecosystem Approach; inclusion of multiple components in the assessment; use of reference conditions; use of integrative assessments; use of a range of values to capture the status; weighting ecosystem components when integrating; determine the uncertainty; ensure spatial and temporal comparability; use of robust monitoring approaches; and address pressures and impacts. Ultimately, for any ecosystem assessment to be effective it needs to be: transparent and repeatable and, in order to inform marine management, the results should be easy to communicate to wide audiences, including scientists, managers and policymakers.

166 citations


Cites methods from "Predicting marine phytoplankton com..."

  • ...…has long been used to monitor chlorophyll a (Coppini et al., 2012), it has only recently been applied to determine phytoplankton size structure (Barnes et al., 2011; Brewin et al., 2011), composition and functionality (Moisan et al., 2013; Palacz et al., 2013; Rousseaux et al., 2013) and…...

    [...]


Journal ArticleDOI
TL;DR: Warming may enhance phytoplankton losses to microzooplankton herbivory in eutrophic but not in oligotrophic waters, and the GAM analysis provides important insights into underlying system relationships and reasons why community-level responses in natural systems may depart from theory.
Abstract: We evaluated a hypothesis derived from the metabolic theory of ecology (MTE) that the ratio of microzooplankton herbivory (m) to phytoplankton growth (m) will arise in a warming ocean because of the different temperature dependencies of autotrophic and heterotrophic organisms. Using community-level growth and grazing data from dilution experiments, generalized additive models (GAMs) were constructed to describe the effects of temperature and chlorophyll on m:m. At low chlorophyll levels, m:m decreases with increasing temperature, whereas at high chlorophyll levels, m:m increases initially with temperature before reaching a peak and then declines. These complex responses of m:m result from mixed effects of temperature and chlorophyll on microzooplankton biomass (Bz), biomass-specific microzooplankton grazing rate (m:Bz), and phytoplankton growth rate (m). Bz decreases with rising temperature and increases with rising chlorophyll. m:Bz increases with temperature and decreases with chlorophyll. Nutrient-enriched growth rate of phytoplankton (mn) and m increase with increasing temperature and chlorophyll. Holding chlorophyll constant, the calculated activation energies of m:Bz and mn are 0.67 6 0.05 and 0.36 6 0.05 eV, respectively, both consistent with previous MTE estimates for heterotrophs and autotrophs. Our study indicates that warming may enhance phytoplankton losses to microzooplankton herbivory in eutrophic but not in oligotrophic waters. The GAM analysis also provides important insights into underlying system relationships and reasons why community-level responses in natural systems may depart from theory based on laboratory data and individual species.

106 citations


Cites background from "Predicting marine phytoplankton com..."

  • ...Thus, as mean cell size of phytoplankton is well related to total chlorophyll (Chen and Liu 2010; Barnes et al. 2011), an increasing trend of ln mn with chlorophyll should be expected....

    [...]

  • ...Phytoplankton mean cell size, another factor affecting mn, is well correlated with total chlorophyll concentration (Chen and Liu 2010; Barnes et al. 2011)....

    [...]


Journal ArticleDOI
TL;DR: It is shown that marine location can be inferred from animal tissues, and carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available.
Abstract: Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology. This information has proven difficult to gain through capture-based methods biased by capture location. Here we show that marine location can be inferred from animal tissues. As the carbon isotope composition of animal tissues varies with sea surface temperature, marine location can be identified by matching time series of carbon isotopes measured in tissues to sea surface temperature records. Applying this technique to populations of Atlantic salmon (Salmo salar L.) produces isotopically-derived maps of oceanic feeding grounds, consistent with the current understanding of salmon migrations, that additionally reveal geographic segregation in feeding grounds between individual philopatric populations and age-classes. Carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available.

97 citations


Journal ArticleDOI
TL;DR: Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions.
Abstract: Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.

96 citations


Cites background from "Predicting marine phytoplankton com..."

  • ...Thus, the median and mean body sizes of phytoplankton decrease with decreasing rates of primary production (Barnes et al., 2011)....

    [...]


References
More filters

Journal ArticleDOI
TL;DR: If the organisms are randomly distributed, a single count is sufficient to obtain an estimate of their abundance and confidence limits for this estimate, even if pipetting, dilution or concentration are involved.
Abstract: Various methods for the estimation of populations of algae and other small freshwater organisms are described. A method of counting is described in detail. It is basically that of Utermohl and uses an inverted microscope. If the organisms are randomly distributed, a single count is sufficient to obtain an estimate of their abundance and confidence limits for this estimate, even if pipetting, dilution or concentration are involved. The errors in the actual counting and in converting colony counts to cell numbers are considered and found to be small relative to the random sampling error. Data are also given for a variant of Utermohl's method using a normal microscope and for a method of using a haemocytometer for the larger plankton algae.

2,457 citations


"Predicting marine phytoplankton com..." refers background or methods in this paper

  • ...Sub-samples (100 ml) were settled (Utermıhl technique (Lund et al. 1958)) and individuals counted at the species level with an inverted microscope....

    [...]

  • ...technique (Lund et al. 1958)) and individuals counted at the species level with an inverted...

    [...]


Journal ArticleDOI
TL;DR: Cellular carbon and nitrogen content and cell volume of nutritionally and morphologically diverse dinoflagellate species were measured to determine carbon to volume and nitrogen to volume relationships.
Abstract: Cellular carbon and nitrogen content and cell volume of nutritionally and morphologically diverse dinoflagellate species were measured to determine carbon to volume (C : vol) and nitrogen to volume (N : vol) relationships. Cellular C and N content ranged from 48 to 3.0 3 10 4 pgC cell 21 21 5

1,894 citations


"Predicting marine phytoplankton com..." refers background in this paper

  • ...0 −− = µvolumeyearCpg Equation 5 reported for taxonomically diverse protist plankton (Menden-Deuer and Lessard 2000)....

    [...]

  • ...reported for taxonomically diverse protist plankton (Menden-Deuer and Lessard 2000)....

    [...]


Journal ArticleDOI
Abstract: An estimate of global net primary production in the ocean has been computed from the monthly mean near-surface chlorophyll fields for 1979-1986 obtained by the Nimbus 7 CZCS radiometer. Our model required information about the subsurface distribution of chlorophyll, the parameters of the photosynthesis-light relationship, the sun angle and cloudiness. The computations were partitioned among 57 biogeochemical provinces that were specified from regional oceanography and by examination of the chlorophyll fields. Making different assumptions about the overestimation of chlorophyll by the CZCS in turbid coastal areas, the global net primary production from phytoplankton is given as 45-50 Gt C year"1. This may be compared with current published estimates for land plants of 45-68 Gt C year"' and for coastal vegetation of 1.9 Gt C year"1.

1,283 citations


"Predicting marine phytoplankton com..." refers background or methods in this paper

  • ...All changes from the implementation of Longhurst et al. (Longhurst et al. 1995) are detailed in Mélin (Mélin 2003)....

    [...]

  • ...ocean area (Longhurst et al. 1995), and to regional differences in phytoplankton community...

    [...]

  • ...PP was computed from a wavelength- and depthresolved model (Mélin 2003), building on the approach of Longhurst et al. (Longhurst et al. 1995)....

    [...]

  • ...This is due to variations in absolute productivity among regions, with 50% of production estimated to come from 27% of ocean area (Longhurst et al. 1995), and to regional differences in phytoplankton community structure....

    [...]

  • ...(Longhurst et al. 1995) are detailed in Mélin (Mélin 2003)....

    [...]


Journal ArticleDOI
TL;DR: This study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events.
Abstract: Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature–size relationships (i.e., Bergmann's rule, James' rule and Temperature–Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events.

1,091 citations


"Predicting marine phytoplankton com..." refers background in this paper

  • ...There is evidence that reduced body size is the third universal ecological response to global warming besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life-cycle events (Daufresne et al. 2009)....

    [...]

  • ...higher altitudes and latitudes and the seasonal shifts in life-cycle events (Daufresne et al. 2009)....

    [...]


Journal ArticleDOI
Abstract: Frequency distributions of particIe size between sizes of about I and 100 p are given for both surface and deep water of the Atlantic and Pacific Oceans. The form of the size spectra varies predictably both geographically and with depth. A hypothesis is presented to show that, to a first approximation, roughly equal concentrations of material occur at all particle sizes within the range from 1 p to about 10” p, i.e. from bacteria to whales.

1,059 citations