scispace - formally typeset
Open AccessJournal ArticleDOI

Searching for better plasmonic materials

Reads0
Chats0
TLDR
A comparative study of various materials including metals, metal alloys and heavily doped semiconductors is presented in this article, where the performance of each material is evaluated based on quality factors defined for each class of plasmonic devices.
Abstract
Plasmonics is a research area merging the fields of optics and nanoelectronics by confining light with relatively large free-space wavelength to the nanometer scale - thereby enabling a family of novel devices. Current plasmonic devices at telecommunication and optical frequencies face significant challenges due to losses encountered in the constituent plasmonic materials. These large losses seriously limit the practicality of these metals for many novel applications. This paper provides an overview of alternative plasmonic materials along with motivation for each material choice and important aspects of fabrication. A comparative study of various materials including metals, metal alloys and heavily doped semiconductors is presented. The performance of each material is evaluated based on quality factors defined for each class of plasmonic devices. Most importantly, this paper outlines an approach for realizing optimal plasmonic material properties for specific frequencies and applications, thereby providing a reference for those searching for better plasmonic materials.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Planar Photonics with Metasurfaces

TL;DR: Progress in the optics of metasurfaces is reviewed and promising applications for surface-confined planar photonics components are discussed and the studies of new, low-loss, tunable plasmonic materials—such as transparent conducting oxides and intermetallics—that can be used as building blocks for metAsurfaces will complement the exploration of smart designs and advanced switching capabilities.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Transformation Optics Using Graphene

TL;DR: By designing and manipulating spatially inhomogeneous, nonuniform conductivity patterns across a flake of graphene, one can have this material as a one-atom-thick platform for infrared metamaterials and transformation optical devices.
Journal ArticleDOI

Graphene Plasmonics: A Platform for Strong Light-Matter Interactions

TL;DR: Graphene plasmons have been proposed as a platform for strongly enhanced light-matter interactions in this paper, where the authors predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, observable vacuum Rabi splittings, and extinction cross sections exceeding the geometrical area in graphene nanoribbons and nanodisks.
Journal ArticleDOI

Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices

TL;DR: In this paper, the potential of hot electrons in metallic structures and its potential as an alternative to conventional electron-hole separation in semiconductor devices are discussed along with challenges in terms of the materials, architectures and fabrication methods.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Book

An introduction to the bootstrap

TL;DR: This article presents bootstrap methods for estimation, using simple arguments, with Minitab macros for implementing these methods, as well as some examples of how these methods could be used for estimation purposes.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Book

Classical Electrodynamics

Book

Introduction to solid state physics

TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.