scispace - formally typeset
Open AccessJournal ArticleDOI

Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core

TLDR
In this paper, a ladder-type electron-deficient core-based central fused ring (Dithienothiophen[3.2-b]- pyrrolobenzothiadiazole) with a benzothiadiadiazoles (BT) core was proposed to fine-tune its absorption and electron affinity.
About
This article is published in Joule.The article was published on 2019-04-17 and is currently open access. It has received 3513 citations till now. The article focuses on the topics: Organic solar cell & Acceptor.

read more

Citations
More filters
Journal ArticleDOI

Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells

TL;DR: In this paper, a small molecule acceptor (SMA) with 3rd position branched alkyl chains was designed and synthesized to investigate the influence of alkyls on the properties and performance of the SMAs.
Journal ArticleDOI

Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology

TL;DR: In this article , a double-fibril network based on a ternary donor-acceptor morphology with multi-length scales was constructed by combining ancillary conjugated polymer crystallizers and a non-fullerene acceptor filament assembly.
Journal ArticleDOI

High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder

TL;DR: In this paper, the use of a small-molecule acceptor with torsion-free molecular conformation can achieve a very low degree of energetic disorder and mitigate energy loss in OSCs.
Journal ArticleDOI

Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model

TL;DR: In this article, an alloy-like composite is formed between Y6 and a newly designed derivative, BTP-M. Employing an electron-pushing methyl substituent as a replacement for the electron-withdrawing F atoms on Y6, the obtained Y6:BTP-m alloy can simultaneously optimize energy levels to reduce energy loss as well as the morphologies of the active layers to favor photocurrent generation, leading to an enhanced open-circuit voltage (Voc) of 0.875 V together with a larger shortcircuit current density (Jsc
Journal ArticleDOI

Single-Junction Polymer Solar Cells with 16.35% Efficiency Enabled by a Platinum(II) Complexation Strategy

TL;DR: The bulky benzene ring on the platinum(II) complex increases the steric hindrance along the polymer main chain, inhibits the polymer aggregation strength, regulates the phase separation, optimizes the morphology, and thus improves the efficiency to 16.35% is the highest efficiency for single-junction PSCs reported so far.
References
More filters
Journal ArticleDOI

Polymer photovoltaic cells : enhanced efficiencies via a network of internal donor-acceptor heterojunctions

TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Journal ArticleDOI

Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections

TL;DR: The re-optimization of a recently proposed long-range corrected hybrid density functional, omegaB97X-D, to include empirical atom-atom dispersion corrections yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions.
Journal Article

Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections

TL;DR: Chai and Head-Gordon as discussed by the authors proposed a long-range corrected (LC) hybrid density functional with Damped Atom-Atom Dispersion corrections, which is called ωB97X-D.
Journal ArticleDOI

Bulk heterojunction solar cells with internal quantum efficiency approaching 100

TL;DR: In this paper, a polymer solar cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported.
Journal ArticleDOI

Polymer–Fullerene Composite Solar Cells

TL;DR: Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer.
Related Papers (5)