scispace - formally typeset
Open AccessJournal ArticleDOI

Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors

TLDR
In this article, the performance and potential of GaAs and of wide and extreme bandgap semiconductors (SiC, GaN, Ga2O3, and diamond), relative to silicon, for power electronics applications are evaluated and compared.
Abstract
We evaluate and compare the performance and potential of GaAs and of wide and extreme bandgap semiconductors (SiC, GaN, Ga2O3, and diamond), relative to silicon, for power electronics applications. We examine their device structures and associated materials/process technologies and selectively review the recent experimental demonstrations of high voltage power devices and IC structures of these semiconductors. We discuss the technical obstacles that still need to be addressed and overcome before large-scale commercialization commences.

read more

Citations
More filters
Journal ArticleDOI

Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS

TL;DR: In this article, the performance of high voltage rectifiers and enhancement-mode metal-oxide field effect transistors on Ga2O3 has been evaluated and shown to benefit from the larger critical electric field relative to either SiC or GaN.
Journal ArticleDOI

Wide Bandgap Devices in AC Electric Drives: Opportunities and Challenges

TL;DR: The problems of high common mode currents and bearing and insulation damage, which are caused by high dv/dt, and the reliability of WBG devices are discussed.
Journal ArticleDOI

Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond

TL;DR: In this paper, the authors highlight recent advances in free-standing wide band-gap membranes, including GaN, SiC, ZnO, β-Ga2O3, and diamond and their applications.
Journal ArticleDOI

High Breakdown Voltage (−201) $\beta $ -Ga2O3 Schottky Rectifiers

TL;DR: The current density near breakdown was not strongly dependent on contact circumference but did scale with contact area, indicating that the bulk current contribution was dominant.
References
More filters
BookDOI

Fundamentals of Power Semiconductor Devices

TL;DR: In this article, the fundamental physics of power semiconductor devices are discussed and an analytical model for explaining the operation of all power Semiconductor devices is presented, focusing on silicon devices.
Journal ArticleDOI

Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates

TL;DR: In this paper, a single-crystal gallium oxide (Ga2O3) metal-semiconductor field effect transistors (MESFETs) with a gate length of 4 μm and a source-drain spacing of 20 μm is presented.
Journal ArticleDOI

Deep-ultraviolet transparent conductive β-Ga2O3 thin films

TL;DR: In this article, β-Ga2O3 with an energy band gap of 4.9 eV was prepared on silica glass substrates by a pulsed-laser deposition method, and the resulting internal transmittance at the wavelength (248 nm) of the KrF excimer laser exceeded 50% for the 100-nm-thick film.
Journal ArticleDOI

Power semiconductor device figure of merit for high-frequency applications

TL;DR: In this paper, the authors derived the Baliga high-frequency figure of merit for power semiconductor devices operating in high frequency circuits and showed that significant performance improvement can be achieved by replacing silicon with gallium arsenide, silicon carbide, or semiconducting diamond.
Journal ArticleDOI

Recent progress in Ga2O3 power devices

TL;DR: In this article, a review article on the current status and future prospects of the research and development on gallium oxide (Ga2O3) power devices is presented, covering single-crystal bulk and wafer production, homoepitaxial thin film growth by molecular beam epitaxy and halide vapor phase epitaxy.
Related Papers (5)