scispace - formally typeset
Open AccessJournal ArticleDOI

Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential

TLDR
The ecology of sponge-microbe associations is examined, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution.
Abstract
Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations.

read more

Citations
More filters
Journal ArticleDOI

Complete nitrification by Nitrospira bacteria

TL;DR: The discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers, and the genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation.

Biodiversity of the Mediterranean Sea: estimates, patterns and threats

TL;DR: Overall spatial and temporal patterns of species diversity and major changes and threats were assessed, and temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity.
Journal ArticleDOI

Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution.

TL;DR: The hologenome theory of evolution considers the holobiont (the animal or plant with all of its associated microorganisms) as a unit of selection in evolution and fits within the framework of the 'superorganism' proposed by Wilson and Sober.
Journal ArticleDOI

A symbiotic view of life: we have never been individuals.

TL;DR: Recognizing the “holobiont”—the multicellular eukaryote plus its colonies of persistent symbionts—as a critically important unit of anatomy, development, physiology, immunology, and evolution opens up new investigative avenues and conceptually challenges the ways in which the biological subdisciplines have heretofore characterized living entities.
References
More filters
Journal ArticleDOI

Marine natural products.

TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.
Journal ArticleDOI

Microbial diversity in the deep sea and the underexplored “rare biosphere”

TL;DR: It is shown that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment.
Related Papers (5)