scispace - formally typeset
Journal ArticleDOI

Structure of a cannabinoid receptor and functional expression of the cloned cDNA

TLDR
The cloning and expression of a complementary DNA that encodes a G protein-coupled receptor that is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana are suggested.
Abstract
Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana.

read more

Citations
More filters
Journal ArticleDOI

The Endocannabinoid System as an Emerging Target of Pharmacotherapy

TL;DR: A comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy is provided.
Journal ArticleDOI

The molecular logic of endocannabinoid signalling

TL;DR: The endocannabinoids are a family of lipid messengers that engage the cell surface receptors that are targeted by Δ9-tetrahydrocannabinol, the active principle in marijuana (Cannabis).
Journal ArticleDOI

SR141716A, a potent and selective antagonist of the brain cannabinoid receptor

TL;DR: SR141716A is the first selective and orally active antagonist of the brain cannabinoid receptor and should prove to be a powerful tool for investigating the in vivo functions of the anandamide/cannabinoid system.
Journal ArticleDOI

Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations.

TL;DR: The results suggest that CB1 and CB2 can be considered as tissue-selective antigens of the central nervous system and immune system, respectively, and cannabinoids may exert specific receptor-mediated actions on the immune system through the CB2 receptor.
Journal ArticleDOI

The endogenous cannabinoid system controls extinction of aversive memories

TL;DR: Treatment of wild-type mice with the CB1 antagonist SR141716A mimicked the phenotype of CB1-deficient mice, revealing that CB1 is required at the moment of memory extinction, and proposes that endocannabinoids facilitate extinction of aversive memories through their selective inhibitory effects on local inhibitory networks in the amygdala.
References
More filters
Journal ArticleDOI

Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction

TL;DR: A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described, providing a pure preparation of undegraded RNA in high yield and can be completed within 4 h.
Journal ArticleDOI

High-efficiency transformation of mammalian cells by plasmid DNA.

TL;DR: A simple calcium phosphate transfection protocol and neo marker vectors that achieve highly efficient transformation of mammalian cells are described and linear DNA is almost inactive in mammalian cells.
Journal ArticleDOI

Cannabinoid receptor localization in brain

TL;DR: The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in the in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience.
Journal ArticleDOI

G proteins and dual control of adenylate cyclase

TL;DR: It is clear that detailed understanding of the mechanism of regulation of CAMP synthesis will soon be achieved from study of the interactions of purified components that have been reconstituted in lipid bilayers of defined composition.
Journal ArticleDOI

Identification of a family of muscarinic acetylcholine receptor genes

TL;DR: Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence.
Related Papers (5)