scispace - formally typeset
Journal ArticleDOI

Two distinct actin networks drive the protrusion of migrating cells

Reads0
Chats0
TLDR
Computational analysis of fluorescent speckle microscopy movies of migrating epithelial cells revealed this process is mediated by two spatially colocalized but kinematically, kinetically, molecularly, and functionally distinct actin networks.
Abstract
Cell migration initiates by extension of the actin cytoskeleton at the leading edge. Computational analysis of fluorescent speckle microscopy movies of migrating epithelial cells revealed this process is mediated by two spatially colocalized but kinematically, kinetically, molecularly, and functionally distinct actin networks. A lamellipodium network assembled at the leading edge but completely disassembled within 1 to 3 micrometers. It was weakly coupled to the rest of the cytoskeleton and promoted the random protrusion and retraction of the leading edge. Productive cell advance was a function of the second colocalized network, the lamella, where actomyosin contraction was integrated with substrate adhesion.

read more

Citations
More filters
Journal ArticleDOI

Blebbistatin modulates prostatic cell growth and contrapctility through myosin II signaling

TL;DR: Novel data demonstrate BLEB regulated myosin expression and functional activity and dose-dependently trigger apoptosis and retard the growth of BPH-1 and WPMY-1 cells and rat prostate tissues.
Journal ArticleDOI

Contribution of myosin II activity to cell spreading dynamics

TL;DR: A simple analytic elastic theory of cell spreading dynamics is presented that quantitatively demonstrates how actin polymerization and myosin activity cooperate in the generation of cellular stress during spreading and demonstrates that the attenuation of myos in activity in the two regions may result in reciprocal effects on spreading.
Journal ArticleDOI

The Wdr1-LIMK-Cofilin Axis Controls B Cell Antigen Receptor-Induced Actin Remodeling and Signaling at the Immune Synapse.

TL;DR: This paper showed that WD repeat-containing protein 1 (Wdr1), LIM domain kinase (LIMK), and coactosin-like 1 (Cotl1) may also be essential for actin-dependent processes in B cells.
Journal ArticleDOI

Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution

TL;DR: The application of live-cell single-molecule imaging to cellular actin dynamics is described, and an electroporation-based method called eSiMS microscopy is introduced, with high efficiency, easiness and improved spatiotemporal precision.
References
More filters
Journal ArticleDOI

Cell Migration: A Physically Integrated Molecular Process

TL;DR: The authors are grateful for financial support from the National Institutes of Health (grants GM23244 and GM53905), and to very helpful comments on the manuscript from Elliot Elson, Vlodya Gelfand, Paul Matsudaira, Julie Theriot, and Sally Zigmond.
Journal ArticleDOI

Cellular Motility Driven by Assembly and Disassembly of Actin Filaments

TL;DR: A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion.
Journal ArticleDOI

The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments

TL;DR: It is shown that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 microM.
Journal ArticleDOI

Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor

TL;DR: It is shown that exit from the cytokinetic phase of the cell cycle depends on ubiquitin-mediated proteolysis and continuous signals from microtubules are required to maintain the position of the cleavage furrow, and these signals control the localization of myosin II independently of other furrow components.
Journal ArticleDOI

Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone.

TL;DR: Results suggest that actin normally polymerizes at the leading edge and then flows rearward at a rate between 3-6 microns/min, which is consistent with their being secondary to effects of CB on lamellar F-actin.
Related Papers (5)