scispace - formally typeset
Journal ArticleDOI

Two distinct actin networks drive the protrusion of migrating cells

Reads0
Chats0
TLDR
Computational analysis of fluorescent speckle microscopy movies of migrating epithelial cells revealed this process is mediated by two spatially colocalized but kinematically, kinetically, molecularly, and functionally distinct actin networks.
Abstract
Cell migration initiates by extension of the actin cytoskeleton at the leading edge. Computational analysis of fluorescent speckle microscopy movies of migrating epithelial cells revealed this process is mediated by two spatially colocalized but kinematically, kinetically, molecularly, and functionally distinct actin networks. A lamellipodium network assembled at the leading edge but completely disassembled within 1 to 3 micrometers. It was weakly coupled to the rest of the cytoskeleton and promoted the random protrusion and retraction of the leading edge. Productive cell advance was a function of the second colocalized network, the lamella, where actomyosin contraction was integrated with substrate adhesion.

read more

Citations
More filters
Journal ArticleDOI

Talin-activated vinculin interacts with branched actin networks to initiate bundles.

TL;DR: The interactions of activated full-length vinculin with actin and the way it regulates the organization and dynamics of the Arp2/3 complex-mediated branched actin network are studied.
Journal ArticleDOI

Actin network architecture and elasticity in lamellipodia of melanoma cells

TL;DR: A new method for the analysis of actin network morphology in the lamellipodia of B16F1 mouse melanoma cells is implemented, indicating an anisotropic shear modulus of the lameLLipodium with the stiffer layer being the dominant structure against deformations in the lamplipodial plane and the softer layer contributing significantly at lower indentations perpendicular to the lamehills.
OtherDOI

Intracellular signaling of cardiac fibroblasts.

TL;DR: Fibrosis is a natural sequel to numerous common cardiac pathologies including myocardial infarction and hypertension, and typically exacerbates cardiovascular disease and progression to heart failure, yet no therapies currently exist to specifically target fibrosis, yet the regulatory processes and intracellular signaling pathways governing fibroblast and myofibroblast behavior represent important points of inquiry for the development of antifibrotic treatments.
Journal ArticleDOI

Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness.

TL;DR: The results suggest that the diminished expression of h2‐calponin in prostate cancer cells increases cell motility, decreases substrate adhesion, and promotes adhesion on high stiffness substrates.
References
More filters
Journal ArticleDOI

Cell Migration: A Physically Integrated Molecular Process

TL;DR: The authors are grateful for financial support from the National Institutes of Health (grants GM23244 and GM53905), and to very helpful comments on the manuscript from Elliot Elson, Vlodya Gelfand, Paul Matsudaira, Julie Theriot, and Sally Zigmond.
Journal ArticleDOI

Cellular Motility Driven by Assembly and Disassembly of Actin Filaments

TL;DR: A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion.
Journal ArticleDOI

The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments

TL;DR: It is shown that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 microM.
Journal ArticleDOI

Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor

TL;DR: It is shown that exit from the cytokinetic phase of the cell cycle depends on ubiquitin-mediated proteolysis and continuous signals from microtubules are required to maintain the position of the cleavage furrow, and these signals control the localization of myosin II independently of other furrow components.
Journal ArticleDOI

Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone.

TL;DR: Results suggest that actin normally polymerizes at the leading edge and then flows rearward at a rate between 3-6 microns/min, which is consistent with their being secondary to effects of CB on lamellar F-actin.
Related Papers (5)