scispace - formally typeset
Open AccessJournal ArticleDOI

VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects

TLDR
Successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects is demonstrated, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.
Abstract
Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Duchenne muscular dystrophy.

TL;DR: In this article, the authors present guidelines for the multidisciplinary care for Duchenne muscular dystrophy that address obtaining a genetic diagnosis and managing the various aspects of the disease.
Journal ArticleDOI

The Pathogenesis and Therapy of Muscular Dystrophies

TL;DR: The nearly 30 years of research partly outlined here exemplifies the road that similar current gene discovery protocols will be expected to travel, albeit much more rapidly owing to improved diagnosis of genetic disorders and an understanding of the spectrum of mutations thought to cause them.
Journal ArticleDOI

Duchenne Muscular Dystrophy: From Diagnosis to Therapy

TL;DR: Duchenne muscular dystrophy is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene, which has opened novel avenues in molecular biology, medical genetics and novel therapeutic options.
References
More filters
Journal ArticleDOI

Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis

TL;DR: It is proposed that this chemical selectively damages cells in the substantia nigra in patients who developed marked parkinsonism after using an illicit drug intravenously.
Journal ArticleDOI

GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons

TL;DR: In embryonic midbrain cultures, recombinant human GDNF promoted the survival and morphological differentiation of dopaminergic neurons and increased their high-affinity dopamine uptake and did not increase total neuron or astrocyte numbers or transmitter uptake.
Journal ArticleDOI

PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.

TL;DR: The authors suggest that PINK1 and Parkin form a pathway that senses damaged mitochondria and selectively targets them for degradation.
Journal ArticleDOI

PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1

TL;DR: Functional links between PINK1, Parkin and the selective autophagy of mitochondria, which is implicated in the pathogenesis of Parkinson's disease, are provided.
Journal ArticleDOI

Mitochondrial complex I deficiency in Parkinson's disease.

TL;DR: Results indicated a specific defect of Complex I activity in the substantia nigra of patients with Parkinson's disease, which adds further support to the proposition that Parkinson’s disease may be due to an environmental toxin with action(s) similar to those of MPTP.
Related Papers (5)