scispace - formally typeset
Search or ask a question

Showing papers on "Alkoxy group published in 2021"



Journal ArticleDOI
TL;DR: In this article, a review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation, focusing on different mechanisms of synthesizing alkoxy radicals and their impact on synthetic utilizations.
Abstract: Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.

103 citations


Journal ArticleDOI
TL;DR: In this paper, a direct photocatalytic methane-to-ethylene conversion pathway involving the formation and dehydrogenation of alkoxy (i.e., methoxy and ethoxy) intermediates over a Pd-modified ZnO-Au hybrid catalyst was reported.
Abstract: Photocatalysis provides an intriguing approach for the conversion of methane to multicarbon (C2+) compounds under mild conditions; however, with methyl radicals as the sole reaction intermediate, the current C2+ products are dominated by ethane, with a negligible selectivity toward ethylene, which, as a key chemical feedstock, possesses higher added value than ethane. Herein, we report a direct photocatalytic methane-to-ethylene conversion pathway involving the formation and dehydrogenation of alkoxy (i.e., methoxy and ethoxy) intermediates over a Pd-modified ZnO-Au hybrid catalyst. On the basis of various in situ characterizations, it is revealed that the Pd-induced dehydrogenation capability of the catalyst holds the key to turning on the pathway. During the reaction, methane molecules are first dissociated into methoxy on the surface of ZnO under the assistance of Pd. Then these methoxy intermediates are further dehydrogenated and coupled with methyl radical into ethoxy, which can be subsequently converted into ethylene through dehydrogenation. As a result, the optimized ZnO-AuPd hybrid with atomically dispersed Pd sites in the Au lattice achieves a methane conversion of 536.0 μmol g-1 with a C2+ compound selectivity of 96.0% (39.7% C2H4 and 54.9% C2H6 in total produced C2+ compounds) after 8 h of light irradiation. This work provides fresh insight into the methane conversion pathway under mild conditions and highlights the significance of dehydrogenation for enhanced photocatalytic activity and unsaturated hydrocarbon product selectivity.

102 citations


Journal ArticleDOI
21 May 2021-Science
TL;DR: In this paper, the authors present evidence that the reported carbon-hydrogen (C-H) activation of alkanes is instead mediated by the photocatalyst [NEt4]2[CeCl6] (NEt 4+, tetraethylammonium), and RO• are not intermediates.
Abstract: The functionalization of methane, ethane, and other alkanes derived from fossil fuels is a central goal in the chemical enterprise. Recently, a photocatalytic system comprising [CeIVCl5(OR)]2− [CeIV, cerium(IV); OR, –OCH3 or –OCCl2CH3] was disclosed. The system was reportedly capable of alkane activation by alkoxy radicals (RO•) formed by CeIV–OR bond photolysis. In this work, we present evidence that the reported carbon-hydrogen (C–H) activation of alkanes is instead mediated by the photocatalyst [NEt4]2[CeCl6] (NEt4+, tetraethylammonium), and RO• are not intermediates. Spectroscopic analyses and kinetics were investigated for C–H activation to identify chlorine radical (Cl•) generation as the rate-limiting step. Density functional theory calculations support the formation of [Cl•][alcohol] adducts when alcohols are present, which can manifest a masked RO• character. This result serves as an important cautionary note for interpretation of radical trapping experiments.

97 citations


Journal ArticleDOI
TL;DR: In this article, the combination of anodic preparation of the alkoxy triphenylphosphonium ion and nickel-catalyzed cathodic reductive cross-coupling provides an efficient method to construct C(sp2)-C(sp3) bonds, in which free alcohols and bromides can be directly used as coupling partners.
Abstract: As alcohols are ubiquitous throughout chemical science, this functional group represents a highly attractive starting material for forging new C-C bonds. Here, we demonstrate that the combination of anodic preparation of the alkoxy triphenylphosphonium ion and nickel-catalyzed cathodic reductive cross-coupling provides an efficient method to construct C(sp2)-C(sp3) bonds, in which free alcohols and aryl bromides-both readily available chemicals-can be directly used as coupling partners. This nickel-catalyzed paired electrolysis reaction features a broad substrate scope bearing a wide gamut of functionalities, which was illustrated by the late-stage arylation of several structurally complex natural products and pharmaceuticals.

89 citations


Journal ArticleDOI
TL;DR: In this article, a flexible alkoxy chain was incorporated into the cationic backbone of poly(ionic liquid)s (PILs) containing bis(trifluoromethanesulfonimide) (TFSI- ) anions, which not only reduces the glass transition temperature of PILs but also endows these materials with strong hydrogen bonding interactions, which contributes to a high cohesive energy and interfacial adhesive energy.
Abstract: Adhesive materials have wide applications in diverse fields, but the development of a novel and multipurpose adhesive is a great challenge. This study demonstrates that conventional poly(ionic liquid)s (PILs) can be designed as highly efficient adhesives by simply introducing alkoxy moieties into the cationic backbone of PILs containing bis(trifluoromethanesulfonimide) (TFSI- ) anions. The incorporated flexible alkoxy chain not only reduces the glass transition temperature of PILs but also endows these materials with strong hydrogen bonding interactions, which, together with the unique electrostatic interaction of the PILs, simultaneously contributes to a high cohesive energy and interfacial adhesive energy. Consequently, these alkoxy PILs are highly adhesive on various substrates such as glass, ceramic, stainless steel, aluminum, and polymers, in contrast to the nonadhesive behavior of conventional PILs. Photosensitive or electronically conductive composite adhesives are fabricated by virtue of the compatibility between ionic liquids and carbon nanotubes or silver nanofibers. Interestingly, the PIL-2-TFSI adhesive possesses a unique and reversible response to electric fields and achieves up to 35% improvement in adhesive strength.

51 citations


Journal ArticleDOI
TL;DR: In this paper, a catalytic methodology for the depolymerization of a commercial phenoxy resin and high molecular weight hydroxylated polyolefin derivatives upon visible light irradiation near ambient temperature is presented.
Abstract: The accumulation of persistent plastic waste in the environment is widely recognized as an ecological crisis. New chemical technologies are necessary both to recycle existing plastic waste streams into high-value chemical feedstocks and to develop next-generation materials that are degradable by design. Here, we report a catalytic methodology for the depolymerization of a commercial phenoxy resin and high molecular weight hydroxylated polyolefin derivatives upon visible light irradiation near ambient temperature. Proton-coupled electron transfer (PCET) activation of hydroxyl groups periodically spaced along the polymer backbone furnishes reactive alkoxy radicals that promote chain fragmentation through C-C bond β-scission. The depolymerization produces well-defined and isolable product mixtures that are readily diversified to polycondensation monomers. In addition to controlling depolymerization, the hydroxyl group modulates the thermomechanical properties of these polyolefin derivatives, yielding materials with diverse properties. These results demonstrate a new approach to polymer recycling based on light-driven C-C bond cleavage that has the potential to establish new links within a circular polymer economy and influence the development of new degradable-by-design polyolefin materials.

35 citations


Journal ArticleDOI
TL;DR: In this paper, the authors tried to figure out alkoxy-substitution effects on two kinds of well-known non-fullerene acceptors (NFAs), IDT-series and Y-series acceptors, by placing alkoxy side chains on the β-positions of the outer thiophene units.
Abstract: In this work, we attempt to figure out alkoxy-substitution effects on two kinds of well-known non-fullerene acceptors (NFAs), IDT-series and Y-series acceptors, by placing alkoxy side chains on the β-positions of the outer thiophene units. The resulting molecules, named IDTN-O and Y6-O, exhibit different properties compared to the original acceptors named IDTN and Y6. The HOMO and LUMO levels of IDTN-O are slightly upshifted at the same time, which causes a slightly higher open-circuit voltage (Voc) without sacrificing the short-circuit current density (Jsc) of the devices. J71:IDTN-O blend films can also achieve a better blend morphology due to the conformational locking effect and higher dipole moment induced by the alkoxy groups, which helps achieve a higher fill factor (FF). In addition, Y6-O exhibits significantly upshifted LUMO levels compared to Y6, leading to a high Voc of 0.95 V. PM6:Y6-O blend films can also maintain an optimal blend morphology through side-chain engineering, which leads to an excellent FF of 78.0%. As a result of alkoxy substitution, both IDTN-O and Y6-O-based devices can achieve better performances of 12.1% and 16.6% than IDTN and Y6-based devices (10.9% and 15.7%), which indicates that this is an effective method to optimize these two types of NFAs.

34 citations


Journal ArticleDOI
TL;DR: In this paper, the color, solubility, luminescence properties, and self-assembly behaviors of dinuclear cyclometalated platinum(II) complexes have been modulated through the introduction of different lengths of alkoxy chains.
Abstract: In this work, through the introduction of different lengths of alkoxy chains to the dinuclear cyclometalated platinum(II) complexes, the apparent color, solubility, luminescence properties, and self-assembly behaviors have been remarkably modulated. In the solid state, the luminescence properties have been found to arise from emission origins that switch between the 3MMLCT excited state in the red solids and the 3IL excited state in the yellow state, depending on the alkoxy chain lengths. The luminescence of the yellow solids is found to show obvious bathochromic shifts under mechanical grinding and decreased intensity under controllable hydrostatic pressure. However, the emission of the red solids exhibits both a bathochromic shift and reduced intensity due to the isotropic compression-induced shortening of the Pt···Pt and π-π distances. By combining the data obtained from X-ray diffraction (XRD), infrared (IR), and X-ray single crystal structure, a better understanding of the relationship between molecular aggregation and photophysical properties has been realized, suggesting that the length of the alkoxy chains plays an important role in governing the supramolecular assemblies.

26 citations


Journal ArticleDOI
TL;DR: In this paper, 43 different kind of aromatic compounds which are important anthropogenic and natural water pollutants were selected as models to investigate their ClO oxidation mechanism and kinetics computationally.

25 citations


Journal ArticleDOI
TL;DR: In this article, a palladium-catalyzed perfluoroalkylative carbonylation of unactivated alkenes using inexpensive and readily available carbon monoxide as the C1 source and perfluoralkyl halides as the coupling partner was reported.
Abstract: Transition-metal-catalyzed multi-component carbonylation represents an efficient strategy for the preparation of various functionalized carbonyl-containing compounds. Herein, we report a general palladium-catalyzed perfluoroalkylative carbonylation of unactivated alkenes using inexpensive and readily available carbon monoxide as the C1 source and perfluoroalkyl halides as the coupling partner. A wide range of phenols and alcohols were transformed into the corresponding β-perfluoroalkyl esters in high yields with broad functional group tolerance and good chemoselectivity. Additionally, alkyl halides can be utilized as alkoxy source as well to give the desired esters. Moreover, several pharmaceutical and bio-active molecules were also suitable substrates for this one-pot multi-component carbonylation process to give the targeted products in good yields.

Journal ArticleDOI
TL;DR: In this paper, two new homologues series, based on two rings of the azomethine central group bearing the terminal alkoxy group of various chain lengths, were prepared.
Abstract: Two new homologues series, based on two rings of the azomethine central group bearing the terminal alkoxy group of various chain lengths, were prepared. The alkoxy chain length varied between 6 and 16 carbons. The other terminal wing in the first series was the F atom, and the compound is named N-4-florobenzylidene-4-(alkoxy)benzenamine (In). The second group of compounds included a lateral NO2 substituent in addition to the terminal F atom, named N-(4-fluoro-3-nitrobenzylidene)-4-(alkyloxy)aniline (IIn). Mesomorphic and optical properties were carried out via differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Elemental analyses, FT-IR, and NMR spectroscopy were carried out to elucidate the molecular structures of the synthesized groups. Mesomorphic investigations indicated that all the synthesized homologues (In) were monomorphic, possessing the smectic A (SmA) phase monotropically, while the second group (IIn) members were non-mesomorphic. The experimental data indicated that the formation of the mesophase is affected by the protrusion of the lateral nitro group. The disruption of the mesophase in the second group was attributed to the increase of its molecular width, which affects its lateral intermolecular interactions. The computational simulations were in agreement with the experimental data. On the other hand, the location of NO2 group within the molecular geometry increased the melting temperature of the molecule, and thus, affected their thermal and physical properties. By discussing the estimated parameters, it was found that the molecular architecture, the dipole moment, and the polarizability of the investigated compounds are highly affected by the electronic nature and position of the terminal and lateral substituents as well as their volumes.

Journal ArticleDOI
TL;DR: In this article, a highly efficient asymmetric alkoxy- and hydroxy-carbonylation of β-carbonyl functionalized alkenes was developed, providing practical and easy access to various densely functionalized chiral molecules with high optical purity.
Abstract: As a fundamental type of carbonylation reaction, the alkoxy- and hydroxy-carbonylation of unsaturated hydrocarbons constitutes one of the most important industrial applications of homogeneous catalysis. However, owing to the difficulties in controlling multi-selectivities for asymmetric hydrocarbonylation of alkenes, this reaction is typically limited to vinylarenes and analogues. In this work, a highly efficient asymmetric alkoxy- and hydroxy-carbonylation of β-carbonyl functionalized alkenes was developed, providing practical and easy access to various densely functionalized chiral molecules with high optical purity from broadly available alkenes, CO, and nucleophiles (>90 examples, 84-99 % ee). This protocol features mild reaction conditions and a broad substrate scope, and the products can be readily transformed into a diverse array of chiral heterocycles. Control experiments revealed the key role of the β-carbonyl group in determining the enantioselectivity and promoting the activity, which facilitates chiral induction by coordination to the transition metal as rationalized by DFT calculations. The strategy of utilizing an innate functional group as the directing group on the alkene substrate might find further applications in catalytic asymmetric hydrocarbonylation reactions.

Journal ArticleDOI
TL;DR: New mesomorphic homologue series of laterally fluorinated azo/esters, 2-fluoro-4-((4-alkoxy)phenyl)diazenyl)-phenyl 4-(alkoxy)-benzoate (In/m), were synthesized and investigated in this article.
Abstract: New mesomorphic homologue series of laterally fluorinated azo/esters, 2-fluoro-4-((4-alkoxy)phenyl)diazenyl)phenyl 4-(alkoxy)benzoate (In/m), were synthesized and investigated their behaviour via e...

Journal ArticleDOI
TL;DR: In this article, the authors used molecular matched-pair analysis to better understand the effects of substitution of oxygenated functionality (hydroxy and alkoxy) with a fluorine atom on lipophilicity and found that the reduced log P of the oxygenated compound is normally dominant in determining the size of this difference.
Abstract: The replacement of oxygenated functionality (hydroxy and alkoxy) with a fluorine atom is a commonly used bioisosteric replacement in medicinal chemistry. In this paper, we use molecular matched-pair analysis to better understand the effects of this replacement on lipophilicity. It seems that the reduced log P of the oxygenated compound is normally dominant in determining the size of this difference. We observe that the presence of additional electron-donating groups on an aromatic ring generally increases the difference in lipophilicity between an oxygenated compound and its fluorinated analogue, while electron-withdrawing groups lead to smaller differences. Ortho-substituted compounds generally display a reduced difference in log P compared to para- and meta-substituted compounds, particularly if an ortho-substituent can form an intramolecular hydrogen bond. Hydrogen-bond acceptors remote to an aromatic ring containing fluorine/oxygen can also reduce the difference in log P between oxygen- and fluorine-substituted compounds.

Journal ArticleDOI
TL;DR: In this article, the initial stages of the NO3-initiated oxidation of isoprene, in particular the fate of the peroxy (RO2) and alkoxy radicals, are examined by an extensive set of quantum chemical and theoretical kinetic calculations.
Abstract: The initial stages of the nitrate radical (NO3) initiated oxidation of isoprene, in particular the fate of the peroxy (RO2) and alkoxy (RO) radicals, are examined by an extensive set of quantum chemical and theoretical kinetic calculations. It is shown that the oxidation mechanism is highly complex, and bears similarities to its OH-initiated oxidation mechanism as studied intensively over the last decade. The nascent nitrated RO2 radicals can interconvert by successive O2 addition/elimination reactions, and potentially have access to a wide range of unimolecular reactions with rate coefficients as high as 35 s−1; the contribution of this chemistry could not be ascertained experimentally. The chemistry of the alkoxy radicals derived from these peroxy radicals is affected by the nitrate moiety, and can lead to the formation of nitrated epoxy peroxy radicals in competition with isomerisation and decomposition channels that terminate the organic radical chain by NO2 elimination. The theoretical predictions are implemented in the FZJ-NO3-isoprene mechanism for NO3-initiated atmospheric oxidation of isoprene. The model predictions are compared against peroxy radical (RO2) and methyl vinyl ketone (MVK) measurements in a set of experiments on the isoprene + NO3 reaction system performed in the SAPHIR environmental chamber (IsopNO3 campaign). It is shown that the formation of NO2 from the peroxy radicals can prevent a large fraction of the peroxy radicals from being measured by the laser-induced fluorescence (ROxLIF) technique that relies on a quantitative conversion of peroxy radicals to hydroxyl radicals. Accounting for the relative conversion efficiency of RO2 species in the experiments, the agreement between observations and the theory-based FZJ-NO3-isoprene model predictions improves significantly. In addition, MVK formation in the NO3-initiated oxidation was found to be suppressed by the epoxidation of the unsaturated RO radical intermediates, allowing the model-predicted MVK concentrations to be in good agreement with the measurements. The FZJ-NO3-isoprene mechanism is compared against the MCM v3.3.1 and Wennberg et al. (2018) mechanisms.

Journal ArticleDOI
TL;DR: In this article, carboxylated nonylphenol ethoxylate surfactant (NPEOnC, n = 2, 4, and 7) at n-decane/water interface has been studied using molecular dynamics simulation in the absence and in the presence of NaCl with different concentrations.

Journal ArticleDOI
TL;DR: In this article, the authors reported the synthesis of five copolymers based on the acceptor 4,7-bis(5-bromo-4-octylthiophen-2-yl)-5,6-bis (octyloxy)benzo[c][1,2,5]thiadiazole copolymerized with thiophene (CP1), 3,4-difluorothiophene(CP2), bithiophene, and selenophene ( CP4) as the donor comonomers.
Abstract: Benzothiadiazole (BT) and its derivatives have been widely used as strong acceptors for enhancing π-stacking and improving the charge carrier transport properties in optoelectronic applications. We report the synthesis of five copolymers based on the acceptor 4,7-bis(5-bromo-4-octylthiophen-2-yl)-5,6-bis(octyloxy)benzo[c][1,2,5]thiadiazole copolymerized with thiophene (CP1), 3,4-difluorothiophene (CP2), bithiophene (CP3), 3,3′-difluoro-2,2′-bithiophene (CP4) and selenophene (CP5) as the donor comonomers. Enhanced copolymer solubility and effective packing between the chains were obtained. All copolymers exhibited favorable optical and electrochemical properties with low band gaps and strong π–π intermolecular interactions. Computational studies on various repetitive units revealed the most stable conformations, dihedral angles, possible interactions and energy levels. OFET devices fabricated with the copolymers exhibited a maximum charge carrier mobility of 0.67 cm2 V−1 s−1 for CP3.

Journal ArticleDOI
TL;DR: In this article, four non-symmetrical derivatives based on central naphthalene moiety, 4-((4-(alkoxy)phenyl) diazenyl)naphthalen-1-yl 4-substitutedbenzoate (In/x), were prepared, and their properties were investigated experimentally and theoretically.
Abstract: Four new non-symmetrical derivatives based on central naphthalene moiety, 4-((4-(alkoxy)phenyl) diazenyl)naphthalen-1-yl 4-substitutedbenzoate (In/x), were prepared, and their properties were investigated experimentally and theoretically. The synthesized materials bear two wing groups: an alkoxy chain of differing proportionate length (n = 6 and 16 carbons) and one terminal attached to a polar group, X. Their molecular structures were elucidated via elemental analyses and FT-IR and NMR spectroscopy. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were carried out to evaluate their mesomorphic properties. The results of the experimental investigations revealed that all the synthesized analogues possess only an enantiotropic nematic (N) mesophase with a high thermal stability and broad range. Density functional theory (DFT) calculations were in accordance with the experimental investigations and revealed that all prepared materials are to be linear and planar. Moreover, the rigidity of the molecule increased when an extra fused ring was inserted into the center of the structural shape, so its thermal and geometrical parameters were affected. Energy gap predictions confirmed that the I16/c derivative is more reactive than other compounds.

Journal ArticleDOI
TL;DR: In this paper, a homolog series based on three aromatic rings bearing terminal alkoxy chain of various lengths named 4-(4-(alkoxy)phenylimino)methyl)phenyl nicotinate (An) were synthesized.
Abstract: Homolog series based on three aromatic rings bearing terminal alkoxy chain of various lengths named 4-(4-(alkoxy)phenylimino)methyl)phenyl nicotinate (An) were synthesized. The alkoxy-chain length changed between 6, 8 and 16 carbons. Mesomorphic and optical properties were carried out via differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Elemental analyses, FT-IR and NMR spectroscopy were carried out to elucidate the molecular structures of the prepared derivatives. Mesomorphic results indicated that all the synthesized homologs (An) are monomorphic possessing the nematic (N) phase enantiotropically with wide thermal stability. Computational simulations were measured via density functional theory (DFT) theoretical calculation tool. The estimated thermal and geometrical parameters are in agreement with the experimental data. By discussing the estimated parameters, it was found that the molecular architecture, dipole moment and the polarizability of the investigated compounds are highly affected by the length of the attached terminal flexible chain and the location of the nitrogen atom in the other terminal aromatic ring. Binary phase diagrams of two corresponding homologs with different proportionating terminals were constructed, and their binary phase physical properties were discussed in terms of the temperature range and stability of the N phase.

Journal ArticleDOI
TL;DR: In this article, the (E)-3-methoxy-4-[(p-tolylimino)methyl]phenyl 4-alkloxybenzoates (I-n) were designed and evaluated for their mesomorphic and optical behavior.
Abstract: New homologues series of liquid crystalline materials namely, (E)-3-methoxy-4-[(p-tolylimino)methyl]phenyl 4-alkloxybenzoates (I-n), were designed and evaluated for their mesomorphic and optical behavior. The prepared series constitutes three members that differ from each other by the terminally attached alkoxy chain group, these vary between 6 and 12 carbons. A laterally OCH3 group is incorporated into the central benzene ring in meta position with respect to the ester moiety. Mesomorphic characterizations of the prepared derivatives are conducted using differential scanning-calorimetry (DSC), polarized optical-microscopy (POM). Molecular structures were elucidated by elemental analyses and NMR spectroscopy. DSC and POM investigations revealed that all the synthesized derivatives are purely nematogenic exhibiting only nematic (N) mesophase, except for the longest chain derivative (I-12) that is dimorphic possesses smectic A and N phases. Moreover, all members of the group have a wide mesomorphic range with high thermal nematic stability. A comparative study was established between the present derivative (I-6) and their previously prepared isomer. The results indicated that the location exchange of the polar compact group (CH3) influences the N mesophase stability and range. The electrical measurements revealed that all synthesized series I-n show Ohmic behaviors with effective electric resistances in the GΩ range. Under white light illumination, the effective electric conductivity for the compound I-8 is five times that obtained in dark conditions. This derivative also showed two direct optical band gaps in the UV and visible light range. In addition, I-6 has band energy gaps of values 1.07 and 2.79 eV, which are suitable for solar energy applications.

Journal ArticleDOI
TL;DR: In this paper, the chemistry of nitrated alkoxy radicals, and its impact on RO2 measurements using the laser induced fluorescence (LIF) technique, is examined by a combined theoretical and experimental study.
Abstract: The chemistry of nitrated alkoxy radicals, and its impact on RO2 measurements using the laser induced fluorescence (LIF) technique, is examined by a combined theoretical and experimental study. Quantum chemical and theoretical kinetic calculations show that the decomposition of β-nitrate-alkoxy radicals is much slower than β-OH-substituted alkoxy radicals, and that the spontaneous fragmentation of the α-nitrate-alkyl radical product to a carbonyl product + NO2 prevents other β-substituents from efficiently reducing the energy barrier. The systematic series of calculations is summarized as an update to the structure–activity relationship (SAR) by Vereecken and Peeters (2009), and shows increasing decomposition rates with higher degrees of substitution, as in the series ethene to 2,3-dimethyl-butene, and dominant H-migration for sufficiently large alkoxy radicals such as those formed from 1-pentene or longer alkenes. The slow decomposition allows other reactions to become competitive, including epoxidation in unsaturated nitrate-alkoxy radicals; the decomposition SAR is likewise updated for β-epoxy substituents. A set of experiments investigating the NO3-initiated oxidation of ethene, propene, cis-2-butene, 2,3-dimethyl-butene, 1-pentene, and trans-2-hexene, were performed in the atmospheric simulation chamber SAPHIR with measurements of HO2 and RO2 radicals performed with a LIF instrument. Comparisons between modelled and measured HO2 radicals in all experiments, performed in excess of carbon monoxide to avoid OH radical chemistry, suggest that the reaction of HO2 with β-nitrate alkylperoxy radicals has a channel forming OH and an alkoxy radical in yields of 15–65%, compatible with earlier literature data on nitrated isoprene and α-pinene radicals. Model concentrations of RO2 radicals when including the results of the theoretical calculations described here, agreed within 10% with the measured RO2 radicals for all species investigated when the alkene oxidation is dominated by NO3 radicals. The formation of NO2 in the decomposition of β-nitrate alkoxy radicals prevents detection of the parent RO2 radical in a LIF instrument, as it relies on formation of HO2. The implications for measurements of RO2 in ambient and experimental conditions, such as for the NO3-dominated chemistry during nighttime, is discussed. The current results appear in disagreement with an earlier indirect experimental study by Yeh et al. on pentadecene.

Journal ArticleDOI
26 Jun 2021-Symmetry
TL;DR: In this article, a laterally fluorinated unsymmetric liquid crystalline homologous series based on cinnamate linkage was synthesized and evaluated via different experimental and computational tools.
Abstract: A new laterally fluorinated unsymmetric liquid crystalline homologous series, based on cinnamate linkage, named 2-fluoro-4-(4-(alkoxy)phenyl)diazenyl)phenyl cinnamate (In), was synthesized and evaluated via different experimental and computational tools. The series had different terminal alkoxy-chain lengths with a lateral F atom in the meta position with respect to the azo moiety. The experimental mesomorphic and optical investigations were carried out using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Theoretical calculations and geometrical parameter predictions were conducted using the DFT program method at B3LYP/6-311G** level of theory. The results revealed that all the designed compounds exhibited the nematic (N) mesophase enantiotropically. The nematic stability and temperature range were impacted by the terminal alkoxy chain length. Compounds with the shortest chains (I6 and I8) showed a monotropic smectic A (SmA) phase, while the longest chain derivative, I16, possessed enantiotropic Sm A phase. Theoretical density functional theory (DFT) predictions were correlated with the practically observed data from the mesomorphic investigations. Data revealed that the terminal alkoxy and lateral F groups had an essential impact on the total energy of possible geometrical structures and their physical and thermal parameters.

Journal ArticleDOI
TL;DR: In this article, a series of hybrid inorganic-organic niobates HCa2Nb3O10×ROH, containing n-alkoxy groups of primary alcohols (R = Me, Et, Pr, Bu, Hx, and Dc) grafted in the interlayer space, has been studied for the first time in relation to photocatalytic hydrogen generation from a model 1 mol % aqueous solution of methanol under ultraviolet irradiation.
Abstract: A series of hybrid inorganic–organic niobates HCa2Nb3O10×ROH, containing n-alkoxy groups of primary alcohols (R = Me, Et, Pr, Bu, Hx, and Dc) grafted in the interlayer space, has been studied for the first time in relation to photocatalytic hydrogen generation from a model 1 mol % aqueous solution of methanol under ultraviolet irradiation. Photocatalytic activity was measured both for bare samples and for their composites with Pt nanoparticles as a cocatalyst. The advanced measurement scheme allowed monitoring the volume concentration of a sample in a suspension during the experiment, its pH, and possible exfoliation of layered compounds into nanolayers. In the series of n-alkoxy derivatives, the maximum rate of hydrogen evolution was achieved over a Pt-loaded ethoxy derivative HCa2Nb3O10×EtOH/Pt. Its apparent quantum efficiency of 20.6% in the 220–350 nm range was found not to be caused by changes in the light absorption region or specific surface area upon ethanol grafting. Moreover, the amounts of hydrogen released during the measurements significantly exceeded those of interlayer organic components, indicating that hydrogen is generated from the reaction solution rather than from the hybrid material.

Journal ArticleDOI
TL;DR: In this paper, the photolysis of aryldiazoacetates and the photochemically promoted Wolff rearrangement was used to produce 5-alkoxy-2,2,4-trisubstituted furan-3(2H)-ones.

Journal ArticleDOI
TL;DR: In this paper, the authors have been deeply involved in the experimental and theoretical validation of C-B bond formation by means of alkoxide activation of tetra-alkoxy diboron reagents and presented a convenient guide to understand the concept and the applications.

Journal ArticleDOI
TL;DR: In this article, a mild electrochemical method for the regioselective preparation of 1-tetralones under environmentally friendly conditions from readily available cyclobutanols was developed.

Journal ArticleDOI
TL;DR: Bulk-heterojunction (BHJ) photovoltaic structures, consisting of polyazomethines blended with the fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester have been prepared and tested in the context of potential application in solar cells.

Journal ArticleDOI
TL;DR: In this article, the first case of dynamic activation of C1 molecules in zeolite-catalyzed chemistry was reported, where a sequence of progressive activation states of dimethyl ether (DME) evoked by the special catalysis from CH3-Zeo, a hybrid supramolecular catalytic system formed by the organic methylic species growing on the inorganic silico-aluminate Zeolite framework, was directly observed by in situ ssNMR spectroscopy at programmed temperatures.
Abstract: Direct observation of the activation and transformation of reactant molecules is extremely attractive but very challenging in the study of most chemical processes. Here is reported the first case of dynamic activation of C1 molecules in zeolite-catalyzed chemistry. During the methanol conversion over the HZSM-5 zeolite, a sequence of progressive activation states of dimethyl ether (DME) evoked by the special catalysis from CH3-Zeo, a hybrid supramolecular catalytic system formed by the organic methylic species growing on the inorganic silico-aluminate zeolite framework, has been directly observed by in situ ssNMR spectroscopy at programmed temperatures. Operando simulations visually display the variability of this hybrid supramolecular system of which the C-O bond property goes through a dynamic transition from covalent to ionic with the temperature increase, and thus the gradually enhanced electrophilicity of CH3δ+ and nucleophilicity of Zeo δ- lead to the dynamic activation of DME. This dynamic transition is generally reflected in the alkyl-Zeo system with other alkoxy groups, which linked the alkoxy species and carbocations in zeolite catalysis. Consequently, this work not only sheds light on the key issue of the first carbon-carbon (C-C) bond formation in the methanol to hydrocarbons (MTH) process but also brings a new awareness on the essence of acid catalysis in zeolite mediated chemical processes.

Journal ArticleDOI
TL;DR: In this article, a series of hexasubstituted cyclotriphosphazene molecules containing Schiff base and azo linking units were synthesised from the reaction between intermediates 1 and 4a-i.
Abstract: Hexakis(oxy-4-benzaldehyde)cyclotriphosphazene, 1 was successfully synthesised by nucleophilic substitution reaction between hexachlorocyclotriphosphazene, HCCP and 4-hydroxybenzaldehyde. Azotization reaction of p-nitroaniline with phenol formed 4-(4-nitrophenylazo)phenol, 2 which was alkykated with heptyl, nonyl, decyl, dodecyl and tetradecylbromide to give a series of nitro compounds, 3a-e. Reduction of 3a-e and 2 formed the subsequent amine compounds 4a-f, 4-(4-alkyloxyphenylazo)phenylamine. Another similar reaction of protected aniline with a series of substituted aniline formed a series of compounds 4g-i. A series of hexasubstituted cyclotriphosphazene molecules containing Schiff base and azo linking units, 5a-i were synthesised from the reaction between intermediates 1 and 4a-i. Further reduction of compound 5i afford compound 5j with amino terminal end. All the synthesised intermediates and compounds were characterised using Fourier Transform Infrared spectroscopy (FT-IR), 1H and 13C Nuclear Magnetic Resonance spectroscopy (NMR) and CHN elemental analysis. The liquid crystal properties of intermediates and final compounds were determined using Polarised Optical Microscope (POM) and their phase transitions confirmed using Differential Scanning Calorimetry (DSC). Only intermediates 3a-e showed mesophase of smectic A and compounds 5a-e with alkoxy chain were mesogenic with smectic A and nematic phases. In addition, compound 5h exhibited nematic phase only. However, all the other intermediates and compounds were found to be non-mesogenic. Furthermore, the fire retardant of final compounds were determined using Limiting Oxygen Index (LOI) testing. The LOI value of pure polyester resin was increased from 22.53 to 24.71% when incorporated with 1 wt% of HCCP. Moreover, all the final compounds showed a positive in LOI value the highest LOI value was belonged to compound 5i with 27.90%.