scispace - formally typeset
Search or ask a question

Showing papers on "Complementary DNA published in 2001"


Journal ArticleDOI
TL;DR: Hepcidin may be a vertebrate counterpart of cysteine-rich antimicrobial peptides produced in the fat body of insects and exhibited antifungal activity against Candida albicans, Aspergillus fumigatus, and As pergillus nigerand antibacterial activity against Escherichia coli.

2,063 citations


Journal ArticleDOI
TL;DR: The data strongly suggest that the product of the new liver-specific gene HEPC might play a specific role during iron overload and exhibit additional functions distinct from its antimicrobial activity.

1,677 citations


Journal ArticleDOI
TL;DR: The identification of differentially expressed genes by cDNA microarray analysis has offered new insights into the mode of action of bioactive glasses and has proven to be an effective tool in evaluating their osteoproductive properties.
Abstract: The effect of the ionic products of Bioglass 45S5 dissolution on the gene-expression profile of human osteoblasts was investigated by cDNA microarray analysis of 1,176 genes. Treatment with the ionic products of Bioglass 45S5 dissolution increased the levels of 60 transcripts twofold or more and reduced the levels of five transcripts to one-half or less than in control. Markedly up-regulated genes included RCL, a c-myc responsive growth related gene, cell cycle regulators such as G1/S specific cyclin D1, and apoptosis regulators including calpain and defender against cell death (DAD1). Other significantly up-regulated genes included the cell surface receptors CD44 and integrin beta1, and various extracellular matrix regulators including metalloproteinases-2 and -4 and their inhibitors TIMP-1 and TIMP-2. The identification of differentially expressed genes by cDNA microarray analysis has offered new insights into the mode of action of bioactive glasses and has proven to be an effective tool in evaluating their osteoproductive properties.

1,158 citations


Journal ArticleDOI
TL;DR: The results show that the full-length cDNA microarray is a useful material with which to analyze the expression pattern of Arabidopsis genes under drought and cold stresses, to identify target genes of stress-related transcription factors, and to identify potential cis-acting DNA elements by combining the expression data with the genomic sequence data.
Abstract: Full-length cDNAs are essential for functional analysis of plant genes. Using the biotinylated CAP trapper method, we constructed full-length Arabidopsis cDNA libraries from plants in different conditions, such as drought-treated, cold-treated, or unstressed plants, and at various developmental stages from germination to mature seed. We prepared a cDNA microarray using ∼1300 full-length Arabidopsis cDNAs to identify drought- and cold-inducible genes and target genes of DREB1A/CBF3, a transcription factor that controls stress-inducible gene expression. In total, 44 and 19 cDNAs for drought- and cold-inducible genes, respectively, were isolated, 30 and 10 of which were novel stress-inducible genes that have not been reported as drought- or cold-inducible genes previously. Twelve stress-inducible genes were identified as target stress-inducible genes of DREB1A, and six of them were novel. On the basis of RNA gel blot and microarray analyses, the six genes were identified as novel drought- and cold-inducible genes that are controlled by DREB1A. Eleven DREB1A target genes whose genomic sequences have been registered in the GenBank database contained the dehydration-responsive element (DRE) or DRE-related CCGAC core motif in their promoter regions. These results show that our full-length cDNA microarray is a useful material with which to analyze the expression pattern of Arabidopsis genes under drought and cold stresses, to identify target genes of stress-related transcription factors, and to identify potential cis-acting DNA elements by combining the expression data with the genomic sequence data.

1,149 citations


Journal ArticleDOI
03 May 2001-Nature
TL;DR: A microarray-driven gene expression system for the functional analysis of many gene products in parallel is developed and identified proteins involved in tyrosine kinase signalling, apoptosis and cell adhesion, and with distinct subcellular distributions.
Abstract: Genome and expressed sequence tag projects are rapidly cataloguing and cloning the genes of higher organisms, including humans. An emerging challenge is to rapidly uncover the functions of genes and to identify gene products with desired properties. We have developed a microarray-driven gene expression system for the functional analysis of many gene products in parallel. Mammalian cells are cultured on a glass slide printed in defined locations with different DNAs. Cells growing on the printed areas take up the DNA, creating spots of localized transfection within a lawn of non-transfected cells. By printing sets of complementary DNAs cloned in expression vectors, we make microarrays whose features are clusters of live cells that express a defined cDNA at each location. Here we demonstrate two uses for our approach: as an alternative to protein microarrays for the identification of drug targets, and as an expression cloning system for the discovery of gene products that alter cellular physiology. By screening transfected cell microarrays expressing 192 different cDNAs, we identified proteins involved in tyrosine kinase signalling, apoptosis and cell adhesion, and with distinct subcellular distributions.

999 citations


Journal ArticleDOI
TL;DR: The broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions, and numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn 4p is a master regulator of gene expression.
Abstract: Starvation for amino acids induces Gcn4p, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. In an effort to identify all genes regulated by Gcn4p during amino acid starvation, we performed cDNA microarray analysis. Data from 21 pairs of hybridization experiments using two different strains derived from S288c revealed that more than 1,000 genes were induced, and a similar number were repressed, by a factor of 2 or more in response to histidine starvation imposed by 3-aminotriazole (3AT). Profiling of a gcn4Δ strain and a constitutively induced mutant showed that Gcn4p is required for the full induction by 3AT of at least 539 genes, termed Gcn4p targets. Genes in every amino acid biosynthetic pathway except cysteine and genes encoding amino acid precursors, vitamin biosynthetic enzymes, peroxisomal components, mitochondrial carrier proteins, and autophagy proteins were all identified as Gcn4p targets. Unexpectedly, genes involved in amino acid biosynthesis represent only a quarter of the Gcn4p target genes. Gcn4p also activates genes involved in glycogen homeostasis, and mutant analysis showed that Gcn4p suppresses glycogen levels in amino acid-starved cells. Numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn4p is a master regulator of gene expression. Interestingly, expression profiles for 3AT and the alkylating agent methyl methanesulfonate (MMS) overlapped extensively, and MMS induced GCN4 translation. Thus, the broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions. Finally, profiling of a gcn4Δ mutant uncovered an alternative induction pathway operating at many Gcn4p target genes in histidine-starved cells.

750 citations


Journal ArticleDOI
TL;DR: It is shown that the transcript is expressed in every human tissue examined but is the highest in the brain, placenta, and pancreas; and cell fractionation suggests that the overexpressed protein is mostly localized in the cytoplasm.

700 citations


Journal ArticleDOI
TL;DR: Both sequence and mRNA expression distribution analyses revealed similarities between apelin and angiotensin II, suggesting they that share related physiological roles.
Abstract: The apelin peptide was recently discovered and demonstrated to be the endogenous ligand for the G protein-coupled receptor, APJ. A search of the GenBank databases retrieved a rat expressed sequence tag partially encoding the preproapelin sequence. The GenBank search also revealed a human sequence on chromosome Xq25-26.1, containing the gene encoding preproapelin. We have used the rat sequence to screen a rat brain cDNA library to obtain a cDNA encoding the full-length open reading frame of rat preproapelin. This cDNA encoded a protein of 77 amino acids, sharing an identity of 82% with human preproapelin. Northern and in situ hybridization analyses revealed both human and rat apelin and APJ to be expressed in the brain and periphery. Both sequence and mRNA expression distribution analyses revealed similarities between apelin and angiotensin II, suggesting they that share related physiological roles. A synthetic apelin peptide was injected intravenously into male Wistar rats, resulting in immediate lowering of both systolic and diastolic blood pressure, which persisted for several minutes. Intraperitoneal apelin injections induced an increase in drinking behavior within the first 30 min after injection, with a return to baseline within 1 h.

638 citations


Journal Article
TL;DR: In situ hybridization analysis showed that trp-p8 mRNA expression was at moderate levels in normal prostate tissue and appears to be elevated in prostate cancer, and predicted protein revealed significant homology with the transient receptor potential (trp) family of Ca(2+) channel proteins.
Abstract: We have identified and cloned a novel gene, trp-p8, by screening a prostate-specific subtracted cDNA library. The 5694-bp cDNA has a 3312-bp open reading frame, which codes for a 1104 amino acid putative protein with seven transmembrane domains. The predicted protein revealed significant homology with the transient receptor potential (trp) family of Ca(2+) channel proteins. Northern blot analysis indicated that trp-p8 expression within normal human tissues is mostly restricted to prostate epithelial cells. In situ hybridization analysis showed that trp-p8 mRNA expression was at moderate levels in normal prostate tissue and appears to be elevated in prostate cancer. Notably, trp-p8 mRNA was also expressed in a number of nonprostatic primary tumors of breast, colon, lung, and skin origin, whereas transcripts encoding trp-p8 were hardly detected or not detected in the corresponding normal human tissues.

625 citations


Journal ArticleDOI
TL;DR: Using cDNA microarrays, the characterization of extracellular matrix-related genes rapidly induced by TGF-β in human dermal fibroblasts was focused on and it was identified that COL1A2, COL3A1, COL6A3, and tissue inhibitor of metalloproteases-1 are definite TGF/Smad3 targets.

622 citations


Journal ArticleDOI
TL;DR: The isolation of a long, but partial, cDNA that corresponds to the CA125 antigen and the deduced amino acid sequence has many of the attributes of a mucin molecule and was designated CA125/MUC16 (gene MUC16).

Journal ArticleDOI
TL;DR: The current study confirms the important role of DGAT in regulating the quantity of seed triacylglycerols and the sink size in developing seeds and shows for the first time that seed-specific over-expression of the DGAT cDNA in wild-type Arabidopsis enhances oil deposition and average seed weight, which are correlated with DGAT transcript levels.
Abstract: We recently reported the cloning and characterization of an Arabidopsis (ecotype Columbia) diacylglycerol acyltransferase cDNA (Zou et al., 1999) and found that in Arabidopsis mutant line AS11, an ethyl methanesulfonate-induced mutation at a locus on chromosome II designated as Tag1 consists of a 147-bp insertion in the DNA, which results in a repeat of the 81-bp exon 2 in the Tag1 cDNA. This insertion mutation is correlated with an altered seed fatty acid composition, reduced diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) activity, reduced seed triacylglycerol content, and delayed seed development in the AS11 mutant. The effect of the insertion mutation on microsomal acyl-coenzyme A-dependent DGAT is examined with respect to DGAT activity and its substrate specificity in the AS11 mutant relative to wild type. We demonstrate that transformation of mutant AS11 with a single copy of the wild-type Tag1 DGAT cDNA can complement the fatty acid and reduced oil phenotype of mutant AS11. More importantly, we show for the first time that seed-specific over-expression of the DGAT cDNA in wild-type Arabidopsis enhances oil deposition and average seed weight, which are correlated with DGAT transcript levels. The DGAT activity in developing seed of transgenic lines was enhanced by 10% to 70%. Thus, the current study confirms the important role of DGAT in regulating the quantity of seed triacylglycerols and the sink size in developing seeds.

Journal ArticleDOI
TL;DR: The results suggest that Tsi1 might be involved as a positive trans-acting factor in two separate signal transduction pathways under abiotic and biotic stress.
Abstract: Using mRNA differential display analysis, we isolated a salt-induced transcript that showed a significant sequence homology with an EREBP/AP2 DNA binding motif from oilseed rape plants. With this cDNA fragment as a probe, cDNA clone Tsi1 (for Tobacco stress-induced gene1) was isolated from a tobacco cDNA library. RNA gel blot analysis indicated that transcripts homologous with Tsi1 were induced not only in NaCl-treated leaves but also in leaves treated with ethephon or salicylic acid. Transient expression analysis using a Tsi1::smGFP fusion gene in BY-2 cells indicated that the Tsi1 protein was targeted to the nucleus. Fusion protein of Tsi1 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity was localized to the 13 C-terminal amino acids of Tsi1. Electrophoretic mobility shift assays revealed that Tsi1 could bind specifically to the GCC and the DRE/CRT sequences, although the binding activity to the former was stronger than that to the latter. Furthermore, Agrobacterium-mediated transient expression and transgenic plants expressing Tsi1 demonstrated that overexpression of the Tsi1 gene induced expression of several pathogenesis-related genes under normal conditions, resulting in improved tolerance to salt and pathogens. These results suggest that Tsi1 might be involved as a positive trans-acting factor in two separate signal transduction pathways under abiotic and biotic stress.

Journal ArticleDOI
TL;DR: Findings demonstrate the existence of a family of β‐defensin genes with different functions against diverse classes of microorganisms, regulated by different stimuli, and specific signal pathways, and confirm the relevance of antimicrobial peptides in host defense.
Abstract: SPECIFIC AIMSThe aim of this study was to identify and characterize a novel human member of the β-defensin family by screening genomic sequences, analyze its genomic structure, tissue distribution, and regulation, and evaluate its antimicrobial and chemoattractant activities.PRINCIPAL FINDINGS1. Analysis of the genomic and cDNA sequences of the novel β-defensinTo identify genomic sequences around human β-defensin 2 at the chromosomal region 8p23, the peptide sequence of this β-defensin was used to perform a ‘basic local alignment search tool’ (BLAST) search in the High Throughput Genomic (HTG) division of the GenBank. Accession numbers AF202031, AF252831, AF189745, and AC074340 were found and subsequently screened for the presence of the β-defensin consensus pattern. Analysis of the clone AF202031 revealed a genomic sequence coding for the carboxy-terminal region of a putative novel β-defensin, which was found in several HTG clones available at GenBank and subsequently termed hBD-4. The full-length cDNA f...

Journal ArticleDOI
TL;DR: An important role of hOAT3 in the excretion/detoxification of endogenous and exogenous organic anions in the kidney is suggested.
Abstract: A cDNA encoding a multispecific organic anion transporter 3 (hOAT3) was isolated from a human kidney cDNA library. The hOAT3 cDNA consisted of 2179 base pairs that encoded a 543-amino-acid residue protein with 12 putative transmembrane domains. The deduced amino acid sequence of hOAT3 showed 36 to 51% identity to those of other members of the OAT family. Northern blot analysis revealed that hOAT3 mRNA is expressed in the kidney, brain, and skeletal muscle. When expressed in Xenopus laevis oocytes, hOAT3 mediated the transport of estrone sulfate ( K m = 3.1 μM), p -aminohippurate ( K m = 87.2 μM), methotrexate ( K m = 10.9 μM), and cimetidine ( K m = 57.4 μM) in a sodium-independent manner. hOAT3 also mediated the transport of dehydroepiandrosterone sulfate, ochratoxin A, PGE2, estradiol glucuronide, taurocholate, glutarate, cAMP and uric acid. Estrone sulfate did not show any trans -stimulatory effects on either influx or efflux of [3H]estrone sulfate via hOAT3. hOAT3 interacted with chemically heterogeneous anionic compounds, such as nonsteroidal anti-inflammatory drugs, diuretics, sulfobromophthalein, penicillin G, bile salts and tetraethyl ammonium bromide. The hOAT3 protein was shown to be localized in the basolateral membrane of renal proximal tubules and the hOAT3 gene was determined to be located on the human chromosome 11q12-q13.3 by fluorescent in situ hybridization analysis. These results suggest an important role of hOAT3 in the excretion/detoxification of endogenous and exogenous organic anions in the kidney.

Journal ArticleDOI
TL;DR: Developmentally regulated expression of the heat-inducible Hsp70 in mature dry seed and roots in the absence of temperature stress suggests prominent roles in seed maturation and root growth for this member of the hsp70 family.
Abstract: We isolated cDNA clones for two nuclear-encoded, organellar members of the Arabidopsis hsp70 gene family, mtHsc70-2 (AF217458) and cpHsc70-2 (AF217459). Together with the completion of the genome sequence, the hsp70 family in Arabidopsis consists of 14 members unequally distributed among the five chromosomes. To establish detailed expression data of this gene family, a comprehensive reverse transcriptase-polymerase chain reaction analysis for 11 hsp70s was conducted including analysis of organ-specific and developmental expression and expression in response to temperature extremes. All hsp70s showed 2- to 20-fold induction by heat shock treatment except cpHsc70-1 and mtHsc70-1, which were unchanged or repressed. The expression profiles in response to low temperature treatment were more diverse than those evoked by heat shock treatment. Both mitochondrial and all cytosolic members of the family except Hsp70b were strongly induced by low temperature, whereas endoplasmic reticulum and chloroplast members were not induced or were slightly repressed. Developmentally regulated expression of the heat-inducible Hsp70 in mature dry seed and roots in the absence of temperature stress suggests prominent roles in seed maturation and root growth for this member of the hsp70 family. This reverse transcriptase-polymerase chain reaction analysis establishes the complex differential expression pattern for the hsp70s in Arabidopsis that portends specialized functions even among members localized to the same subcellular compartment.

Journal ArticleDOI
TL;DR: These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering and alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoter pene biosynthetic step leads to improved oil composition.
Abstract: Peppermint (Mentha × piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition.

Journal ArticleDOI
TL;DR: HTLR10 mRNA is most highly expressed in lymphoid tissues such as spleen, lymph node, thymus, and tonsil, and Expression analysis of cell lines indicates a predominance in a variety of immune cell types, and is preferentially expressed in tissues and cells involved in immune responses.

Journal ArticleDOI
TL;DR: A new gene family is identified, including members in fungi, plants and animals, which encode enzymes with DGAT function, and is designated this new class DGAT2 and refers to the M. ramanniana genes asMrDGAT2A and MrDGat2B.

Journal ArticleDOI
TL;DR: A mutation in the subdomain 3 of the kinase domain could result in an alteration in the expression and/or phosphorylation of SMADs, resulting in the phenotype characteristic of the Booroola animals which is the 'precocious' development of a large number of small antral follicles resulting in increased ovulation rate.
Abstract: Genetic variations in ovulation rate which occur in different breeds of sheep provide useful models to explore the mechanisms regulating the development of antral follicles. The Booroola gene, an autosomal mutation that affects ovulation rate, has been known for over two decades and despite intensive research it has not yet been identified. Using resources from human genome mapping and known data about gene linkage and chromosome location in the sheep, we selected the gene encoding the Bone Morphogenetic Protein receptor (BMPR) type 1 B (ALK-6) as a candidate site for the mutation. The BMPR1B gene in the human is located at the region linked with the Booroola mutation, syntenic to chromosome 6 in the sheep. A fragment of the sheep BMPR1B gene was cloned from an ovarian cDNA and the deduced aminoacid (AA) sequence is over 98% homologous to the known mammalian sequences. cDNA and genomic DNA from 20 Booroola genotypes were screened and two point mutation were found in the kinase domain of the receptor, one at base 746 of the coding region (A in the ++ to a G in FF animals) which results in a change from a glutamine in the wild type to a arginine in the Booroola animals. Another point mutation was identified at position 1113, (C to A) but this mutation does not change the coding aminoacid. The first mutation was confirmed in genomic DNA from 10 ewes from an independent Brazilian flock which segregates the Booroola phenotype. In all instances homozygous FecB gene carrier (n=11) had only the 746 A to G mutation, non gene carriers (n=14) had only the wild type sequence and heterozygote gene carriers (n=5) had both sequences. This mutation in the subdomain 3 of the kinase domain could result in an alteration in the expression and/or phosphorylation of SMADs, resulting in the phenotype characteristic of the Booroola animals which is the 'precocious' development of a large number of small antral follicles resulting in increased ovulation rate.

Journal ArticleDOI
01 Dec 2001-Bone
TL;DR: The gene expression patterns of two distinct precursor populations associated with mineralized tissue are described, and a basis for further characterization of the functional roles for many of these genes in the development of dentin and bone is provided.

Journal ArticleDOI
TL;DR: A 5-kDa polypeptide was isolated from tobacco leaves that induced a rapid alkalinization of the culture medium of tobacco suspension-cultured cells and a concomitant activation of an intracellular mitogen-activated protein kinase, and it caused an arrest of root growth and development.
Abstract: A 5-kDa polypeptide was isolated from tobacco leaves that induced a rapid alkalinization of the culture medium of tobacco suspension-cultured cells and a concomitant activation of an intracellular mitogen-activated protein kinase. An N-terminal sequence was obtained, and a cDNA coding for the 49-aa polypeptide was isolated from a tobacco cDNA library. The cDNA encoded a preproprotein of 115 amino acids that contained the polypeptide at its C terminus. A search among known expressed sequence tags revealed that genes encoding Rapid ALkalinization Factor (RALF) preproproteins were present in various tissues and organs from 16 species of plants representing 9 families. A tomato homolog of the polypeptide was synthesized and, when supplied to germinating tomato and Arabidopsis seeds, it caused an arrest of root growth and development. Although its specific role in growth has not been established, the polypeptide joins the ranks of the increasing number of polypeptide hormones that are known to regulate plant stress, growth, and development.

Journal ArticleDOI
TL;DR: It is proposed that the double‐strand ends present in unintegrated cDNA promote apoptosis, as is known to be the case for chromosomal double-strand breaks, and cDNA circularization removes the pro‐apoptotic signal.
Abstract: Early after infection, the retroviral RNA genome is reverse transcribed to generate a linear cDNA copy, then that copy is integrated into a chromosome of the host cell. We report that unintegrated viral cDNA is a substrate for the host cell non-homologous DNA end joining (NHEJ) pathway, which normally repairs cellular double-strand breaks by end ligation. NHEJ activity was found to be required for an end-ligation reaction that circularizes a portion of the unintegrated viral cDNA in infected cells. Consistent with this, the NHEJ proteins Ku70 and Ku80 were found to be bound to purified retroviral replication intermediates. Cells defective in NHEJ are known to undergo apoptosis in response to retroviral infection, a response that we show requires reverse transcription to form the cDNA genome but not subsequent integration. We propose that the double-strand ends present in unintegrated cDNA promote apoptosis, as is known to be the case for chromosomal double-strand breaks, and cDNA circularization removes the pro-apoptotic signal.

Journal ArticleDOI
TL;DR: A novel apolipop Protein A-V is identified that is associated with an early phase of liver regeneration in the rat liver and was present in plasma fractions containing high density lipoprotein particles.

Journal ArticleDOI
TL;DR: A role for L1 ORF1p is suggested in mediating nucleic acid strand transfer steps during L1 reverse transcription, promoting annealing of complementary DNA strands, and facilitating strand exchange to form the most stable hybrids in competitive displacement assays.
Abstract: Non-LTR retrotransposons such as L1 elements are major components of the mammalian genome, but their mechanism of replication is incompletely understood. Like retroviruses and LTR-containing retrotransposons, non-LTR retrotransposons replicate by reverse transcription of an RNA intermediate. The details of cDNA priming and integration, however, differ between these two classes. In retroviruses, the nucleocapsid (NC) protein has been shown to assist reverse transcription by acting as a “nucleic acid chaperone,” promoting the formation of the most stable duplexes between nucleic acid molecules. A protein-coding region with an NC-like sequence is present in most non-LTR retrotransposons, but no such sequence is evident in mammalian L1 elements or other members of its class. Here we investigated the ORF1 protein from mouse L1 and found that it does in fact display nucleic acid chaperone activities in vitro. L1 ORF1p (i) promoted annealing of complementary DNA strands, (ii) facilitated strand exchange to form the most stable hybrids in competitive displacement assays, and (iii) facilitated melting of an imperfect duplex but stabilized perfect duplexes. These findings suggest a role for L1 ORF1p in mediating nucleic acid strand transfer steps during L1 reverse transcription.


Journal ArticleDOI
TL;DR: This patient presents the clinical features of leukocyte adhesion deficiency type II (LAD II) including mental retardation, short stature, facial stigmata, and recurrent bacterial peripheral infections with persistently elevated peripheral leukocytes.
Abstract: Congenital disorders of glycosylation (CDG) comprise a rapidly growing group of inherited disorders in which glycosylation of glycoproteins is defective due to mutations in genes required for the assembly of lipid-linked oligosaccharides, their transfer to nascent glycoproteins (CDG-I) or the processing of protein-bound glycans1,2 (CDG-II). Previously' a defect in the GDP-fucose import into the lumen of the Golgi was identified in a person with CDG (A.C.) with a general deficiency of fucosyl residues in glycoproteins3. This patient presents the clinical features of leukocyte adhesion deficiency type II (LAD II) including mental retardation, short stature, facial stigmata, and recurrent bacterial peripheral infections with persistently elevated peripheral leukocytes4,5,6,7. Using a fucose-specific, lectin-staining procedure for detection of fucosylated glycoproteins and a retroviral cDNA library, we isolated a cDNA complementing the fucosylation defect in the patient's fibroblasts. The cDNA encodes a highly hydrophobic protein of 364 amino acids with multiple putative transmembrane domains. Restoration of GDP-fucose import activity in Golgi-enriched vesicles from the patient's fibroblasts verified the GDP-fucose transporter activity of this protein. We identified two missense mutations in the GDP-fucose transporter cDNA of patient A.C. and of two other people with LAD II. Thus complementation cloning allowed us to identify the human GDP-fucose transporter cDNA and GDP-fucose transporter deficiency as a cause for a new type of CDG. Following the recent recommendations2,8 for the nomenclature for CDG, this new type is classified as CDG-IIc (formerly LAD II).

Journal ArticleDOI
TL;DR: It is demonstrated by mutation analysis and protein sequencing that human STIM2 initiates translation exclusively from a non-AUG start site in vivo, indicating a possible functional interaction between STIM1 and STIM 2.
Abstract: STIM1 (where STIM is stromal interaction molecule) is a candidate tumour suppressor gene that maps to human chromosome 11p15.5, a region implicated in a variety of cancers, particularly embryonal rhabdomyosarcoma. STIM1 codes for a transmembrane phosphoprotein whose structure is unrelated to that of any other known proteins. The precise pathway by which STIM1 regulates cell growth is not known. In the present study we screened gene databases for STIM1-related sequences, and have identified and characterized cDNA sequences representing a single gene in humans and other vertebrates, which we have called STIM2. We identified a single STIM homologue in Drosophila melanogaster (D-Stim) and Caenorhabditis elegans, but no homologues in yeast. STIM1, STIM2 and D-Stim have a conserved genomic organization, indicating that the vertebrate family of two STIM genes most probably arose from a single ancestral gene. The three STIM proteins each contain a single SAM (sterile alpha-motif) domain and an unpaired EF hand within the highly conserved extracellular region, and have coiled-coil domains that are conserved in structure and position within the cytoplasmic region. However, the STIM proteins diverge significantly within the C-terminal half of the cytoplasmic domain. Differential levels of phosphorylation appear to account for two molecular mass isoforms (105 and 115 kDa) of STIM2. We demonstrate by mutation analysis and protein sequencing that human STIM2 initiates translation exclusively from a non-AUG start site in vivo. STIM2 is expressed ubiquitously in cell lines, and co-precipitates with STIM1 from cell lysates. This association into oligomers in vivo indicates a possible functional interaction between STIM1 and STIM2. The structural similarities between STIM1, STIM2 and D-STIM suggest conserved biological functions.

Journal ArticleDOI
TL;DR: A novel metalloprotease, which could be responsible for cleaving the Tyr842-Met843 peptide bond of von Willebrand factor (vWF), is identified and its genomic DNA was mapped to human chromosome 9q34.
Abstract: We identified a novel metalloprotease, which could be responsible for cleaving the Tyr842-Met843 peptide bond of von Willebrand factor (vWF). This metalloprotease was purified from Cohn Fraction-I precipitate of human pooled plasma by the combination of gel filtration, DEAE chromatography, and preparative polyacrylamide gel electrophoresis in the presence of SDS. The NH2-terminal amino acid sequence of the isolated protein was: AAGGILHLELLVAVGPDVFQAHQEDTRRY. Based on this sequence, we searched human genomic and EST databases, and identified compatible nucleotide sequences. These results suggested that this protein is a novel metalloprotease, a member of the family of a disintegrin and metalloprotease with thrombospondin type-1 motifs (ADAMTS), and its genomic DNA was mapped to human chromosome 9q34. Multiple human tissue northern blotting analysis indicated that the mRNA encoding this protease spanned approximately 5 kilobases and was uniquely expressed in the liver. Furthermore, we determined the cDNA sequence encoding this protease, and found that this protease was comprised of a signal peptide, a proregion followed by the putative furin cleavage site, a reprolysin-type zinc-metalloprotease domain, a disintegrin-like domain, a thrombospondin type-1 (TSP1) motif, a cysteine-rich region, a spacer domain, and COOH-terminal TSP1 motif repeats.

Journal ArticleDOI
TL;DR: In situ hybridization in murine tissues revealed expression in intestinal epithelial and lymphoid cells, and Immunohistochemistry demonstrated the human MUC13 protein on the apical membrane of both columnar and goblet cells in the gastrointestinal tract, indicative of secretion in addition to presence on the cell surface.