scispace - formally typeset
Search or ask a question

Showing papers on "Diacylglycerol kinase published in 2009"


Journal ArticleDOI
TL;DR: The discovery of PDCT is important for understanding glycerolipid metabolism in plants and other organisms, and provides tools to modify the fatty acid compositions of plant oils for improved nutrition, biofuel, and other purposes.
Abstract: The polyunsaturated fatty acids (PUFAs) linoleic acid (18:2) and α-linolenic acid (18:3) in triacylglycerols (TAG) are major factors affecting the quality of plant oils for human health, as well as for biofuels and other renewable applications. These PUFAs are essential fatty acids for animals and plants, but also are the source of unhealthy trans fats during the processing of many foodstuffs. PUFAs 18:2 and 18:3 are synthesized in developing seeds by the desaturation of oleic acid (18:1) esterified on the membrane lipid phosphatidylcholine (PC) on the endoplasmic reticulum. The reactions and fluxes involved in this metabolism are incompletely understood, however. Here we show that a previously unrecognized enzyme, phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), encoded by the Arabidopsis ROD1 gene, is a major reaction for the transfer of 18:1 into PC for desaturation and also for the reverse transfer of 18:2 and 18:3 into the TAG synthesis pathway. The PDCT enzyme catalyzes transfer of the phosphocholine headgroup from PC to diacylglycerol, and mutation of rod1 reduces 18:2 and 18:3 accumulation in seed TAG by 40%. Our discovery of PDCT is important for understanding glycerolipid metabolism in plants and other organisms, and provides tools to modify the fatty acid compositions of plant oils for improved nutrition, biofuel, and other purposes.

301 citations


Journal ArticleDOI
Zvi Naor1
TL;DR: Understanding these molecular mechanisms triggered by the GnRHR through biochemical and 'Systems Biology' approaches would provide the basis for the construction of the dynamic connectivity maps, which operate in the various cell types (endocrine, cancer, and immune system) targeted by GnRH.

281 citations


Journal ArticleDOI
TL;DR: While plants contain most of the components described above, and evidence for their role in cell signaling is progressively increasing, major differences between plants and the mammalian paradigms exist.

267 citations


Journal ArticleDOI
TL;DR: Convincing data to support the hypothesis that specific lipid intermediates initiate pathways that alter insulin signaling will require studies in which the concentration of each purported signaling molecule can be manipulated independently.

240 citations


Journal ArticleDOI
TL;DR: The data identify a DAG-dependent pathway that signals through dynein to control microtubule polarity in T cells and shows that MTOC polarization is driven by localized accumulation of diacylglycerol (DAG).
Abstract: The reorientation of the T cell microtubule-organizing center (MTOC) toward the antigen-presenting cell enables the directional secretion of cytokines and lytic factors. By single-cell photoactivation of the T cell antigen receptor, we show that MTOC polarization is driven by localized accumulation of diacylglycerol (DAG). MTOC reorientation was closely preceded first by production of DAG and then by recruitment of the microtubule motor protein dynein. Blocking DAG production or disrupting the localization of DAG impaired MTOC recruitment. Localized DAG accumulation was also required for cytotoxic T cell-mediated killing. Furthermore, photoactivation of DAG itself was sufficient to induce transient polarization. Our data identify a DAG-dependent pathway that signals through dynein to control microtubule polarity in T cells.

222 citations


Journal ArticleDOI
TL;DR: This study indicates that TG is not likely to be a toxic lipid species directly, but rather it is a feature of physiologic hypertrophy and may serve a cytoprotective role in lipid overload states and induction of DGAT1 could be beneficial in the setting of excess heart accumulation of toxic lipids.

216 citations


Journal ArticleDOI
26 Jun 2009-Science
TL;DR: The three-dimensional structure of the DAGK homotrimer is determined with the use of solution nuclear magnetic resonance, providing insight into the determinants of lipid substrate specificity and phosphotransferase activity.
Abstract: Escherichia coli diacylglycerol kinase (DAGK) represents a family of integral membrane enzymes that is unrelated to all other phosphotransferases. We have determined the three-dimensional structure of the DAGK homotrimer with the use of solution nuclear magnetic resonance. The third transmembrane helix from each subunit is domain-swapped with the first and second transmembrane segments from an adjacent subunit. Each of DAGK's three active sites resembles a portico. The cornice of the portico appears to be the determinant of DAGK's lipid substrate specificity and overhangs the site of phosphoryl transfer near the water-membrane interface. Mutations to cysteine that caused severe misfolding were located in or near the active site, indicating a high degree of overlap between sites responsible for folding and for catalysis.

210 citations


Journal ArticleDOI
TL;DR: Several protein targets have now been discovered that bind PA, and whether the PA molecules engaged in these interactions come from PLD or DGK remains to be elucidated.

207 citations


Journal ArticleDOI
TL;DR: The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity.
Abstract: Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications.

189 citations


Journal ArticleDOI
TL;DR: In this article, the authors report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phosphatidic acid (PA) and PIP(2) rapidly accumulate, with the heat-induced PIP (2) localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures.
Abstract: Heat stress induces an array of physiological adjustments that facilitate continued homeostasis and survival during periods of elevated temperatures. Here, we report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phospholipase D (PLD) and a phosphatidylinositolphosphate kinase (PIPK) are activated, and phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP(2)) rapidly accumulate, with the heat-induced PIP(2) localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures. Increases in the steady-state levels of PA and PIP(2) occur within several minutes of temperature increases from ambient levels of 20-25 degrees C to 35 degrees C and above. Similar patterns were observed in heat-stressed Arabidopsis seedlings and rice leaves. The PA that accumulates in response to temperature increases results in large part from the activation of PLD rather than the sequential action of phospholipase C and diacylglycerol kinase, the alternative pathway used to produce this lipid. Pulse-labelling analysis revealed that the PIP(2) response is due to the activation of a PIPK rather than inhibition of a lipase or a PIP(2) phosphatase. Inhibitor experiments suggest that the PIP(2) response requires signalling through a G-protein, as aluminium fluoride blocks heat-induced PIP(2) increases. These results are discussed in the context of the diverse cellular roles played by PIP(2) and PA, including regulation of ion channels and the cytoskeleton.

184 citations


Journal ArticleDOI
TL;DR: The proposed integrin binding domain on the external surface of LPP3 modifies cell/cell interactions and expresses LPPs on internal membranes controls signaling depending on the access of lipid phosphates to their active sites.

Journal ArticleDOI
TL;DR: The results suggest that female rat osteoblasts bear non‐genomic unconventional cell surface receptors for estradiol, belonging to the class of the membrane receptors coupled to a phospholipase C via a pertussis toxin‐sensitive G protein.
Abstract: Estrogen deficiency is associated with bone loss, and estrogen replacement is an effective treatment of this osteoporotic process. This study examines the early (5-120 s) effects of 17 beta-estradiol on the intracellular calcium and phospholipid metabolism in confluent female rat osteoblasts. The cytosolic free Ca2+ concentration ([Ca2+]i) was determined using fura-2/AM as Ca2+ probe. Cells were labeled with myo-[2-3H]inositol or [14C]arachidonic acid for inositol or lipid determination. Inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) production were determined by either mass measurement or anion-exchange chromatography or by thin-layer chromatography, respectively. 17 beta-Estradiol (1 pM to 1 nM) increased [Ca2+]i in a biphasic manner within 10 s via Ca2+ influx from the extracellular milieu, as shown by the effects of the calcium chelator EGTA and the Ca2+ channel blockers nifedipine and verapamil, and via Ca2+ mobilization from the endoplasmic reticulum (ER), as shown by the effects of thapsigargin. 17 beta-Estradiol (1 pM to 1 nM) induced a biphasic and concomitant increase in IP3 and DAG formation. Estradiol immobilized on bovine serum albumin (BSA) [E-(O-carboxymethyl)oxime BSA] and its derivative (O-carboxymethyl)oxime rapidly increased ([Ca2+]i, IP3, and DAG and were full agonists, although they were less potent than the free estradiol. They had the same action time course and acted via Ca2+ influx and Ca2+ mobilization from ER. Tamoxifen, a potent inhibitor of genomic steroid responses, did not block the rapid increase in Ca2+, IP3, and DAG induced by estradiol. Finally, inhibitor of phospholipase C (neomycin) and pertussis toxin abolished the effects of 17 beta-estradiol on IP3 and DAG formation. These results suggest that female rat osteoblasts bear non-genomic unconventional cell surface receptors for estradiol, belonging to the class of the membrane receptors coupled to a phospholipase C via a pertussis toxin-sensitive G protein.

Journal ArticleDOI
TL;DR: Activation of receptors by endothelin-1 and angiotensin II in smooth muscle cells results in phopholipase C (PLC) activation leading to the generation of the second messengers insitol trisphosphate (IP(3)) and diacylglycerol (DAG).
Abstract: Vasoactive peptides, such as endothelin-1 and angiotensin II are recognized by specific receptor proteins located in the cell membrane of target cells. Following receptor recognition, the specificity of the cellular response is achieved by G-protein coupling of ligand binding to the regulation of intracellular effectors. These intracellular effectors will be the subject of this brief review on contractile activity initiated by endothelin-1 and angiotensin II.Activation of receptors by endothelin-1 and angiotensin II in smooth muscle cells results in phopholipase C (PLC) activation leading to the generation of the second messengers insitol trisphosphate (IP(3)) and diacylglycerol (DAG). IP(3) stimulates intracellular Ca(2+) release from the sarcoplasmic reticulum and DAG causes protein kinase C (PKC) activation. Additionally, different Ca(2+) entry channels, such as voltage-operated (VOC), receptor-operated (ROC), and store-operated (SOC) Ca(2+) channels, as well as Ca(2+)-permeable nonselective cation channels (NSCC), are involved in the elevation of intracellular Ca(2+) concentration. The elevation in intracellular Ca(2+) is transient and initiates contractile activity by a Ca(2+)-calmodulin interaction, stimulating myosin light chain (MLC) phosphorylation. When the Ca(2+) concentration begins to decline, Ca(2+)-sensitization of the contractile proteins is signaled by the RhoA/Rho-kinase pathway to inhibit the dephosphorylation of MLC phosphatase (MLCP) thereby maintaining force generation. Removal of Ca(2+) from the cytosol and stimulation of MLCP initiates the process of smooth muscle relaxation. In pathological conditions such as hypertension, alterations in these cellular signaling components can lead to an over stimulated state causing maintained vasoconstriction and blood pressure elevation.

Journal ArticleDOI
TL;DR: The results collectively suggest that simultaneous operation of receptor and mechanical stimulations may synergistically amplify transmembrane Ca2+ mobilization through TRPC6 activation, thereby enhancing the vascular tone via phospholipase C/diacylglycerol and phospholIPase A2/&ohgr;-hydroxylase/20-HETE pathways.
Abstract: TRPC6 is a non-voltage-gated Ca(2+) entry/depolarization channel associated with vascular tone regulation and remodeling. Expressed TRPC6 channel responds to both neurohormonal and mechanical stimuli, the mechanism for which remains controversial. In this study, we examined the possible interactions of receptor and mechanical stimulations in activating this channel using the patch clamp technique. In HEK293 cells expressing TRPC6, application of mechanical stimuli (hypotonicity, shear, 2,4,6-trinitrophenol) caused, albeit not effective by themselves, a prominent potentiation of cationic currents (I(TRPC6)) induced by a muscarinic receptor agonist carbachol. This effect was insensitive to a tarantula toxin GsMTx-4 (5 mumol/L). A similar extent of mechanical potentiation was observed after activation of I(TRPC6) by GTPgammaS or a diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG). Single TRPC6 channel activity evoked by carbachol was also enhanced by a negative pressure added in the patch pipette. Mechanical potentiation of carbachol- or OAG-induced I(TRPC6) was abolished by small interfering RNA knockdown of cytosolic phospholipase A(2) or pharmacological inhibition of omega-hydroxylation of arachidonic acid into 20-HETE (20-hydroxyeicosatetraenoic acid). Conversely, direct application of 20-HETE enhanced both OAG-induced macroscopic and single channel TRPC6 currents. Essentially the same results were obtained for TRPC6-like cation channel in A7r5 myocytes, where its activation by noradrenaline or Arg8 vasopressin was greatly enhanced by mechanical stimuli via 20-HETE production. Furthermore, myogenic response of pressurized mesenteric artery was significantly enhanced by weak receptor stimulation dependently on 20-HETE production. These results collectively suggest that simultaneous operation of receptor and mechanical stimulations may synergistically amplify transmembrane Ca(2+) mobilization through TRPC6 activation, thereby enhancing the vascular tone via phospholipase C/diacylglycerol and phospholipase A(2)/omega-hydroxylase/20-HETE pathways.

Journal ArticleDOI
TL;DR: This review discusses three of the more extensively studied forms of this enzyme, DGKalpha, DGkvarepsilon, and DGKzeta, which have an important role in immune function and its activity is modulated by several mechanisms.

Journal ArticleDOI
TL;DR: Results show that salt stress rapidly activates several lipid responses in rice leaves but that these responses do not explain the difference in salt tolerance between sensitive and tolerant cultivars.
Abstract: Salinity is one of the major environmental factors limiting growth and productivity of rice plants. In this study, the effect of salt stress on phospholipid signaling responses in rice leaves was investigated. Leaf cuts were radiolabeled with 32P-orthophosphate and the lipids extracted and analyzed by thin-layer chromatography, autoradiography and phosphoimaging. Phospholipids were identified by co-migration of known standards. Results showed that 32P(i) was rapidly incorporated into the minor lipids, phosphatidylinositol bisphosphate (PIP2) and phosphatidic acid (PA) and, interestingly, also into the structural lipids phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), which normally label relatively slowly, like phosphatidylcholine (PC) and phosphatidylinositol (PI). Only very small amounts of PIP2 were found. However, in response to salt stress (NaCl), PIP2 levels rapidly (<30 min) increased up to 4-fold, in a time- and dose-dependent manner. PA and its phosphorylated product, diacylglycerolpyrophosphate (DGPP), also increased upon NaCl stress, while cardiolipin (CL) levels decreased. All other phospholipid levels remained unchanged. PA signaling can be generated via the combined action of phospholipase C (PLC) and diacylglycerol kinase (DGK) or directly via phospholipase D (PLD). The latter can be measured in vivo, using a transphosphatidylation assay. Interestingly, these measurements revealed that salt stress inhibited PLD activity, indicating that the salt stress-induced PA response was not due to PLD activity. Comparison of the 32P-lipid responses in salt-tolerant and salt-sensitive cultivars revealed no significant differences. Together these results show that salt stress rapidly activates several lipid responses in rice leaves but that these responses do not explain the difference in salt tolerance between sensitive and tolerant cultivars.

Journal ArticleDOI
TL;DR: The Pasteurella multocida toxin and YM-254890 are described, which are useful tools to investigate Gq signaling as activator and inhibitor, respectively and the physiological function of Gq in developmental brain, especially in neural progenitor cells is discussed.
Abstract: Gq family members of heterotrimeric G protein activate beta isoforms of phospholipase C that hydrolyzes phosphatidylinositol phosphate to diacylglycerol and inositol trisphosphate, leading to the protein kinase C activation and intracellular Ca(2+) mobilization, respectively. To understand the functions and regulatory mechanisms of Gq-signaling pathways, we first introduce the Galphaq-interacting proteins, which function as the effectors and the modulators of Gq. Next, we describe the Pasteurella multocida toxin and YM-254890, which are useful tools to investigate Gq signaling as activator and inhibitor, respectively. Finally, we discuss the physiological function of Gq in developmental brain, especially in neural progenitor cells.

Journal ArticleDOI
TL;DR: The data suggest that these lipid droplet proteins are recruited to DG-enriched membranes thereby linking lipid coat proteins to the metabolic state of the cell.

Journal ArticleDOI
05 May 2009-PLOS ONE
TL;DR: It is demonstrated that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death.
Abstract: CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species), and cardiolipins (tetraacyl species). The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death.

Journal ArticleDOI
TL;DR: Diacylglycerol kinase-mediated phosphatidic acid biosynthesis and production ofosphatidylcholine via methylation of phosph atidylethanolamine as modifiers of lipotoxicity are identified, linking lipot toxicity with early aspects of pancreatic β-cell dysfunction, diabetes, and the metabolic syndrome.

Journal ArticleDOI
17 Sep 2009-Blood
TL;DR: A revised model for platelet activation is established that establishes one molecule, CalDAG-GEFI, at the nexus of Ca(2+)-induced integrin activation, TxA(2) generation, and granule release, and challenges the current model that DAG/PKC-dependent signaling events are crucial for the initiation of platelet adhesion.

Journal ArticleDOI
TL;DR: Three lipid phosphate phosphatases regulate cell signaling by modifying the concentrations of a variety of lipid phosphates versus their dephosphorylated products through controlling the turnover of bioactive lipids that are formed after PLD activation.

Journal ArticleDOI
22 Oct 2009-PLOS ONE
TL;DR: Data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands ontoTLR2 in the plasma-membrane.
Abstract: Background Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria.

Journal ArticleDOI
TL;DR: It is shown that Znt5/Slc30a5 is required for contact hypersensitivity and mast cell–mediated delayed-type allergic response but not for immediate passive cutaneous anaphylaxis, and it is a novel player in mast cell activation.
Abstract: Zinc (Zn) is an essential nutrient and its deficiency causes immunodeficiency. However, it remains unknown how Zn homeostasis is regulated in mast cells and if Zn transporters are involved in allergic reactions. We show that Znt5/Slc30a5 is required for contact hypersensitivity and mast cell-mediated delayed-type allergic response but not for immediate passive cutaneous anaphylaxis. In mast cells from Znt5(-/-) mice, Fc epsilon receptor I (Fc epsilonRI)-induced cytokine production was diminished, but degranulation was intact. Znt5 was involved in Fc epsilonRI-induced translocation of protein kinase C (PKC) to the plasma membrane and the nuclear translocation of nuclear factor kappaB. In addition, the Zn finger-like motif of PKC was required for its plasma membrane translocation and binding to diacylglycerol. Thus, Znt5 is selectively required for the mast cell-mediated delayed-type allergic response, and it is a novel player in mast cell activation.

Journal ArticleDOI
TL;DR: Hematocyte-specific deletion of the ECT gene in mice resulted in normal appearing animals without overt signs of liver injury or inflammation, illustrating the complete reliance on the PtdSer decarboxylase pathway for PtdEtn synthesis.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that to preserve membrane PE phospholipids, Pcyt2 deficiency generates compensatory changes in triglyceride and energy substrate metabolism, resulting in a progressive development of liver steatosis, hypertriglyceridemia, obesity, and insulin resistance, the main features of the metabolic syndrome.

Journal ArticleDOI
TL;DR: In this paper, the effect of lipin-1 expression on the assembly and secretion of very low density lipoproteins (VLDL) using McA-RH7777 cells was determined.

Journal ArticleDOI
TL;DR: It is shown that hyperactivation of TORC2 would exacerbate insulin resistance by enhancing expression of LIPIN1, a mammalian phosphatidic acid phosphatase for diacylglycerol (DAG) synthesis, and proposed that dysregulation of Torc2 would further exaggerate insulin resistance and promote type 2 diabetes in a LIPin1-dependent manner.

Journal ArticleDOI
TL;DR: The roles of PLD and DGK in regulating the activity of several Ras superfamily members and cellular processes they control are summarized and the implication of PA regulation of Ras small GTPases in pathology is discussed.

Journal ArticleDOI
17 Apr 2009-Immunity
TL;DR: It is shown that DKF-2, a C. elegans PKD, regulates innate immunity and provides a molecular link that couples DAG signaling to regulation of immunity and mobilizes activation of host immune defenses against pathogens by previously unappreciated signaling pathways and mechanisms.