scispace - formally typeset
Search or ask a question

Showing papers on "Energy source published in 2011"


Journal ArticleDOI
TL;DR: In this paper, a review has been done on scope of CO2 mitigation through solar cooker, water heater, dryer, biofuel, improved cookstove and by hydrogen, which provides an excellent opportunity for mitigation of greenhouse gas emission and reducing global warming through substituting conventional energy sources.
Abstract: Renewable technologies are considered as clean sources of energy and optimal use of these resources minimize environmental impacts, produce minimum secondary wastes and are sustainable based on current and future economic and social societal needs. Sun is the source of all energies. The primary forms of solar energy are heat and light. Sunlight and heat are transformed and absorbed by the environment in a multitude of ways. Some of these transformations result in renewable energy flows such as biomass and wind energy. Renewable energy technologies provide an excellent opportunity for mitigation of greenhouse gas emission and reducing global warming through substituting conventional energy sources. In this article a review has been done on scope of CO2 mitigation through solar cooker, water heater, dryer, biofuel, improved cookstoves and by hydrogen.

2,584 citations


Journal ArticleDOI
TL;DR: Various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications are surveyed and the implications of recharge opportunities on sensor node operation and design of sensor network solutions are discussed.
Abstract: Sensor networks with battery-powered nodes can seldom simultaneously meet the design goals of lifetime, cost, sensing reliability and sensing and transmission coverage. Energy-harvesting, converting ambient energy to electrical energy, has emerged as an alternative to power sensor nodes. By exploiting recharge opportunities and tuning performance parameters based on current and expected energy levels, energy harvesting sensor nodes have the potential to address the conflicting design goals of lifetime and performance. This paper surveys various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications. The study also discusses the implications of recharge opportunities on sensor node operation and design of sensor network solutions.

1,870 citations


Journal ArticleDOI
TL;DR: It is shown that primary human omental adipocytes promote homing, migration and invasion of ovarian cancer cells, and that adipokines including interleukin-8 (IL-8) mediate these activities, and adipocytes provide fatty acids for rapid tumor growth.
Abstract: Intra-abdominal tumors, such as ovarian cancer, have a clear predilection for metastasis to the omentum, an organ primarily composed of adipocytes. Currently, it is unclear why tumor cells preferentially home to and proliferate in the omentum, yet omental metastases typically represent the largest tumor in the abdominal cavities of women with ovarian cancer. We show here that primary human omental adipocytes promote homing, migration and invasion of ovarian cancer cells, and that adipokines including interleukin-8 (IL-8) mediate these activities. Adipocyte-ovarian cancer cell coculture led to the direct transfer of lipids from adipocytes to ovarian cancer cells and promoted in vitro and in vivo tumor growth. Furthermore, coculture induced lipolysis in adipocytes and β-oxidation in cancer cells, suggesting adipocytes act as an energy source for the cancer cells. A protein array identified upregulation of fatty acid-binding protein 4 (FABP4, also known as aP2) in omental metastases as compared to primary ovarian tumors, and FABP4 expression was detected in ovarian cancer cells at the adipocyte-tumor cell interface. FABP4 deficiency substantially impaired metastatic tumor growth in mice, indicating that FABP4 has a key role in ovarian cancer metastasis. These data indicate adipocytes provide fatty acids for rapid tumor growth, identifying lipid metabolism and transport as new targets for the treatment of cancers where adipocytes are a major component of the microenvironment.

1,665 citations


Journal ArticleDOI
TL;DR: A survey of biomass pret treatment technologies with emphasis on concepts, mechanism of action and practicability, and the potential for industrial applications of different pretreatment technologies are the highlights of this paper.

1,618 citations


Journal ArticleDOI
TL;DR: Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.
Abstract: In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

1,457 citations


Journal ArticleDOI
TL;DR: It is demonstrated that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues and this tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source.

1,328 citations


Journal ArticleDOI
TL;DR: In this paper, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass and comparison between biomass and other fuels.
Abstract: Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40–50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO 2 and NO x emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

1,293 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the lifecycle cost and carbon impacts of Ordinary Portland Cement (OPC) and geopolymers in an Australian context, with an identification of some key challenges for geopolymer development.

1,099 citations


Book
28 May 2011
TL;DR: In this article, the authors provide a comprehensive treatise on solid oxide fuel cells and succeed in filling the gap in the market for a reference book in this field Directed towards scientists, engineers, and technical managers working with SOFCs as well as ceramic devices based on conducting materials, and in related fields, the book will also be invaluable as a textbook for science and engineering courses.
Abstract: Hardbound Ceramic fuel cells, commonly known as solid oxide fuel cells (SOFCs), have been under development for a broad range of electric power generation applications The most attractive feature of the SOFC is its clean and efficient production of electricity from a variety of fuels The SOFC has the potential to be manufactured and operated cost-effectively The widening interest in this technology, thus, arises from the continuing need to develop cleaner and more efficient means of converting energy sources into useful formsThis topical book provides a comprehensive treatise on solid oxide fuel cells and succeeds successfully in filling the gap in the market for a reference book in this field Directed towards scientists, engineers, and technical managers working with SOFCs as well as ceramic devices based on conducting materials, and in related fields, the book will also be invaluable as a textbook for science and engineering courses

1,013 citations


Journal ArticleDOI
TL;DR: Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil, where algal-oil processes into biodiesel as easily as oil derived from land-based crops.

950 citations


BookDOI
01 Jan 2011
TL;DR: In this paper, the authors discuss the potential of renewable energy in the context of sustainable development and its potential to mitigate climate change in the future, and present and future energy systems.
Abstract: Foreword Preface Summary for policymakers Technical summary 1. Renewable energy and climate change 2. Bioenergy 3. Direct solar energy 4. Geothermal energy 5. Hydropower 6. Ocean energy 7. Wind energy 8. Integration of renewable energy into present and future energy systems 9. Renewable energy in the context of sustainable development 10. Mitigation potential and costs 11. Policy, financing and implementation Annex I. Glossary and acronyms Annex II. Methodology Annex III. Recent renewable energy cost and performance parameters Annex IV. Contributors to the IPCC Special Report Annex V. Reviewers of the IPCC Special Report Annex VI. Permissions to publish.

Journal ArticleDOI
TL;DR: The cultivation and isolation of an AOA from soil is described, showing it grows on ammonia or urea as an energy source and is capable of using higher ammonia concentrations than the marine isolate, Nitrosopumilus maritimus.
Abstract: Genes of archaea encoding homologues of ammonia monooxygenases have been found on a widespread basis and in large amounts in almost all terrestrial and marine environments, indicating that ammonia oxidizing archaea (AOA) might play a major role in nitrification on Earth. However, only one pure isolate of this group from a marine environment has so far been obtained, demonstrating archaeal ammonia oxidation coupled with autotrophic growth similar to the bacterial counterparts. Here we describe the cultivation and isolation of an AOA from soil. It grows on ammonia or urea as an energy source and is capable of using higher ammonia concentrations than the marine isolate, Nitrosopumilus maritimus. Surprisingly, although it is able to grow chemolithoautotrophically, considerable growth rates of this strain are obtained only upon addition of low amounts of pyruvate or when grown in coculture with bacteria. Our findings expand the recognized metabolic spectrum of AOA and help explain controversial results obtained in the past on the activity and carbon assimilation of these globally distributed organisms.

Journal ArticleDOI
01 Jun 2011-Elements
TL;DR: Water management has emerged as a critical issue in the development of these inland gas reservoirs, where hydraulic fracturing is used to liberate the gas as discussed by the authors, where large volumes of water containing very high concentrations of total dissolved solids (TDS) return to the surface.
Abstract: Development of unconventional, onshore natural gas resources in deep shales is rapidly expanding to meet global energy needs. Water management has emerged as a critical issue in the development of these inland gas reservoirs, where hydraulic fracturing is used to liberate the gas. Following hydraulic fracturing, large volumes of water containing very high concentrations of total dissolved solids (TDS) return to the surface. The TDS concentration in this wastewater, also known as “flowback,” can reach 5 times that of sea water. Wastewaters that contain high TDS levels are challenging and costly to treat. Economical production of shale gas resources will require creative management of flowback to ensure protection of groundwater and surface water resources. Currently, deep-well injection is the primary means of management. However, in many areas where shale gas production will be abundant, deep-well injection sites are not available. With global concerns over the quality and quantity of fresh water, novel water management strategies and treatment technologies that will enable environmentally sustainable and economically feasible natural gas extraction will be critical for the development of this vast energy source.

Journal ArticleDOI
TL;DR: It is established that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.
Abstract: The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

Journal ArticleDOI
TL;DR: The smart grid model offers the best potential for maximum utilization of RESs to reduce cost and emission from the electricity industry.
Abstract: The electricity and transportation industries are the main sources of greenhouse gas emissions on Earth. Renewable energy, mainly wind and solar, can reduce emission from the electricity industry (mainly from power plants). Likewise, next-generation plug-in vehicles, which include plug-in hybrid electric vehicles (EVs) and EVs with vehicle-to-grid capability, referred to as “gridable vehicles” (GVs) by the authors, can reduce emission from the transportation industry. GVs can be used as loads, energy sources (small portable power plants), and energy storages in a smart grid integrated with renewable energy sources (RESs). Smart grid operation to reduce both cost and emission simultaneously is a very complex task considering smart charging and discharging of GVs in a distributed energy source and load environment. If a large number of GVs is connected to the electric grid randomly, peak load will be very high. The use of traditional thermal power plants will be economically and environmentally expensive to support the electrified transportation. The intelligent scheduling and control of GVs as loads and/or sources have great potential for evolving a sustainable integrated electricity and transportation infrastructure. Cost and emission reductions in a smart grid by maximum utilization of GVs and RESs are presented in this paper. Possible models for GV applications, including the smart grid model, are given, and results are presented. The smart grid model offers the best potential for maximum utilization of RESs to reduce cost and emission from the electricity industry.

Journal ArticleDOI
TL;DR: Microwave-assisted methods that have been developed to synthesize colloidal inorganic nanocrystals are illustrated and the specific roles that microwave irradiation may play in the formation of these nanomaterials are critically evaluated.
Abstract: Colloidal inorganic nanocrystals stand out as an important class of advanced nanomaterials owing to the flexibility with which their physical-chemical properties can be controlled through size, shape, and compositional engineering in the synthesis stage and the versatility with which they can be implemented into technological applications in fields as diverse as optoelectronics, energy conversion/production, catalysis, and biomedicine. The use of microwave irradiation as a non-classical energy source has become increasingly popular in the preparation of nanocrystals (which generally involves complex and time-consuming processing of molecular precursors in the presence of solvents, ligands and/or surfactants at elevated temperatures). Similar to its now widespread use in organic chemistry, the efficiency of "microwave flash heating" in dramatically reducing overall processing times is one of the main advantages associated with this technique. This Review illustrates microwave-assisted methods that have been developed to synthesize colloidal inorganic nanocrystals and critically evaluates the specific roles that microwave irradiation may play in the formation of these nanomaterials.

Journal ArticleDOI
TL;DR: In this article, the authors present a brief history of energy harvesting for low power systems followed by a review of the state-of-the-art energy harvesting techniques, power conversion, power management, and battery charging.

Journal ArticleDOI
TL;DR: In this paper, the authors tackle the tricky energy question and associated environmental issues as personally perceived and highlight the eminent role of electric energy produced from decarbonized sources in a future sustainable economy.
Abstract: The fundamental challenge of the 21st century that mankind has to face is definitely energy supply, its storage and conversion in a way that necessarily protects the environment. For 250 years, the tremendous development of humanity has been founded on the harnessing of fossil fuels (coal, crude oil then natural gas) as primary energy due to their high energy density values and the easiness of access. However, this global pattern of energy supply and use is unsustainable. Global warming and finite fossil-fuel supplies call for a radical change in the energy mix to favour renewable energy sources. Without being exhaustive, we tackle in this article the tricky energy question and associated environmental issues as personally perceived. The eminent role of electric energy produced from decarbonized sources in a future sustainable economy is particularly highlighted as well as the issues of its needed storage. The possible and foreseen hindrances of electrochemical energy storage devices, focusing on the lithium-ion technology, are presented in parallel with the possible pathways to make such a technology greener in synergy with the rise of a biomass-based industry.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection of massive molecular outflows, traced by the hydroxyl molecule (OH), in far-infrared spectra of ULIRGs obtained with Herschel-PACS as part of the SHINING key project.
Abstract: Mass outflows driven by stars and active galactic nuclei (AGNs) are a key element in many current models of galaxy evolution. They may produce the observed black-hole-galaxy mass relation and regulate and quench both star formation in the host galaxy and black hole accretion. However, observational evidence of such feedback processes through outflows of the bulk of the star-forming molecular gas is still scarce. Here we report the detection of massive molecular outflows, traced by the hydroxyl molecule (OH), in far-infrared spectra of ULIRGs obtained with Herschel-PACS as part of the SHINING key project. In some of these objects the (terminal) outflow velocities exceed 1000?km?s?1, and their outflow rates (up to ~1200 M ? yr?1) are several times larger than their star formation rates. We compare the outflow signatures in different types of ULIRGs and in starburst galaxies to address the issue of the energy source (AGN or starburst) of these outflows. We report preliminary evidence that ULIRGs with a higher AGN luminosity (and higher AGN contribution to L IR) have higher terminal velocities and shorter gas depletion timescales. The outflows in the observed ULIRGs are able to expel the cold gas reservoirs from the centers of these objects within ~106-108 years.

Posted Content
TL;DR: In this article, the authors considered the problem of energy allocation over a finite horizon, taking into account channel conditions and energy sources that are time varying, so as to maximize the throughput.
Abstract: We consider the use of energy harvesters, in place of conventional batteries with fixed energy storage, for point-to-point wireless communications. In addition to the challenge of transmitting in a channel with time selective fading, energy harvesters provide a perpetual but unreliable energy source. In this paper, we consider the problem of energy allocation over a finite horizon, taking into account channel conditions and energy sources that are time varying, so as to maximize the throughput. Two types of side information (SI) on the channel conditions and harvested energy are assumed to be available: causal SI (of the past and present slots) or full SI (of the past, present and future slots). We obtain structural results for the optimal energy allocation, via the use of dynamic programming and convex optimization techniques. In particular, if unlimited energy can be stored in the battery with harvested energy and the full SI is available, we prove the optimality of a water-filling energy allocation solution where the so-called water levels follow a staircase function.

Journal ArticleDOI
TL;DR: In this paper, the suitability of different densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end-product quality are discussed, and the quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States standard) or CEN (European standard).
Abstract: Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties such as size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (i) pellet mill, (ii) cuber, (iii) screw extruder, (iv) briquette press, (v) roller press, (vi) tablet press, and (vii) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end-product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pre-treatment options like pre-heating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulfonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States standard) or CEN (European standard). Published in 2011 by John Wiley & Sons, Ltd Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

Patent
11 Oct 2011
TL;DR: In this paper, the authors propose a pivoting cover configured to cover a recess in the body in which a proximal portion of the shaft assembly is received, where the pivot feature is operable to secure the shaft to the body.
Abstract: A surgical instrument comprises a body and a shaft assembly. The body includes an energy source such as an ultrasonic transducer. The shaft assembly comprises an end effector and a transmission member such as an acoustic waveguide. The end effector may include a harmonic blade and a pivoting clamp member. One or both of the body or the shaft assembly includes a pivot feature. The pivot feature is operable to secure the shaft assembly to the body. The pivot feature may include a bar defining a pivot axis about which the shaft assembly pivots to secure the shaft assembly to the body. The pivot axis may be perpendicular to a longitudinal axis defined by the shaft assembly. The pivot feature may also include a pivoting cover configured to cover a recess in the body in which a proximal portion of the shaft assembly is received.

Journal ArticleDOI
TL;DR: It is shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL, and an iterative design methodology is devised that provides the optimal coil geometries in a 3-coils inductive power transfer link.
Abstract: Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit-based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for a 13.56-MHz carrier frequency and 12-cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.

Journal ArticleDOI
TL;DR: In this article, the Compromise Ranking method is combined with the Analytical Hierarchy Process for weighting the importance of the different criteria, which allows decision-makers to assign these values based on their preferences.

Journal ArticleDOI
TL;DR: In this article, a flexible and lightweight fabric supercapacitor electrode is described as a possible energy source in smart garments, and the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing).
Abstract: This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ∼0.25 A·g−1 achieved a high gravimetric and areal capacitance, an average of 85 F·g−1 on cotton lawn and polyester microfiber, both corresponding to ∼0.43 F·cm−2.

Journal ArticleDOI
TL;DR: It is concluded that the overall environmental impacts of cultured meat production are substantially lower than those of conventionally produced meat.
Abstract: Cultured meat (i.e., meat produced in vitro using tissue engineering techniques) is being developed as a potentially healthier and more efficient alternative to conventional meat. Life cycle assessment (LCA) research method was used for assessing environmental impacts of large-scale cultured meat production. Cyanobacteria hydrolysate was assumed to be used as the nutrient and energy source for muscle cell growth. The results showed that production of 1000 kg cultured meat requires 26–33 GJ energy, 367–521 m3 water, 190–230 m2 land, and emits 1900–2240 kg CO2-eq GHG emissions. In comparison to conventionally produced European meat, cultured meat involves approximately 7–45% lower energy use (only poultry has lower energy use), 78–96% lower GHG emissions, 99% lower land use, and 82–96% lower water use depending on the product compared. Despite high uncertainty, it is concluded that the overall environmental impacts of cultured meat production are substantially lower than those of conventionally produced meat.

Journal ArticleDOI
TL;DR: The results argue that this triglyceride may be effective in the treatment of inflammatory conditions as indicated by the results obtained with the inhibitors of these enzymes.
Abstract: Short chain fatty acids (SCFAs) are fermentation products of anaerobic bacteria. More than just being an important energy source for intestinal epithelial cells, these compounds are modulators of leukocyte function and potential targets for the development of new drugs. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate and butyrate) on production of nitric oxide (NO) and proinflammatory cytokines [tumor necrosis factor α (TNF-α) and cytokine-induced neutrophil chemoattractant-2 (CINC-2αβ)] by rat neutrophils. The involvement of nuclear factor κB (NF-κB) and histone deacetylase (HDAC) was examined. The effect of butyrate was also investigated in vivo after oral administration of tributyrin (a pro-drug of butyrate). Propionate and butyrate diminished TNF-α, CINC-2αβ and NO production by LPS-stimulated neutrophils. We also observed that these fatty acids inhibit HDAC activity and NF-κB activation, which might be involved in the attenuation of the LPS response. Products of cyclooxygenase and 5-lipoxygenase are not involved in the effects of SCFAs as indicated by the results obtained with the inhibitors of these enzymes. The recruitment of neutrophils to the peritonium after intraperitoneal administration of a glycogen solution (1%) and the ex vivo production of cytokines and NO by neutrophils were attenuated in rats that previously received tributyrin. These results argue that this triglyceride may be effective in the treatment of inflammatory conditions.

Journal ArticleDOI
TL;DR: Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential, and have functional respiratory complexes that are able to consume O2 at maximal capacity.
Abstract: It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O2 at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F1F0 ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential.

Journal ArticleDOI
TL;DR: In this article, the impact of technological change on investment in renewable energy capacity was assessed using the PATSTAT database, using two possible filters: weighting patents by patent family size and including only patent applications filed in multiple countries.

Proceedings Article
15 Jun 2011
TL;DR: A 0.35µm CMOS energy processor with multiple inputs from solar, thermal and vibration energy sources is presented and a novel low power maximum power point tracking (MPPT) scheme with 95% tracking efficiency is introduced.
Abstract: A 0.35µm CMOS energy processor with multiple inputs from solar, thermal and vibration energy sources is presented. Dual-path architecture for energy harvesting is proposed that has up to 13% higher conversion efficiency compared to the conventional two stage storage-regulation architecture. To minimize the cost and form factor, a single inductor has been time shared for all converters. A novel low power maximum power point tracking (MPPT) scheme with 95% tracking efficiency is also introduced.