scispace - formally typeset
Search or ask a question

Showing papers on "Multi-objective optimization published in 2017"


Journal ArticleDOI
TL;DR: The qualitative and quantitative results prove the efficiency of SSA and MSSA and demonstrate the merits of the algorithms proposed in solving real-world problems with difficult and unknown search spaces.

3,027 citations


Journal ArticleDOI
TL;DR: PlatEMO as discussed by the authors is a MATLAB platform for evolutionary multi-objective optimization, which includes more than 50 multiobjective evolutionary algorithms and more than 100 multobjective test problems, along with several widely used performance indicators.
Abstract: Over the last three decades, a large number of evolutionary algorithms have been developed for solving multi-objective optimization problems. However, there lacks an upto-date and comprehensive software platform for researchers to properly benchmark existing algorithms and for practitioners to apply selected algorithms to solve their real-world problems. The demand of such a common tool becomes even more urgent, when the source code of many proposed algorithms has not been made publicly available. To address these issues, we have developed a MATLAB platform for evolutionary multi-objective optimization in this paper, called PlatEMO, which includes more than 50 multiobjective evolutionary algorithms and more than 100 multi-objective test problems, along with several widely used performance indicators. With a user-friendly graphical user interface, PlatEMO enables users to easily compare several evolutionary algorithms at one time and collect statistical results in Excel or LaTeX files. More importantly, PlatEMO is completely open source, such that users are able to develop new algorithms on the basis of it. This paper introduces the main features of PlatEMO and illustrates how to use it for performing comparative experiments, embedding new algorithms, creating new test problems, and developing performance indicators. Source code of PlatEMO is now available at: http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.

915 citations


Posted Content
TL;DR: The main features of PlatEMO are introduced and how to use it for performing comparative experiments, embedding new algorithms, creating new test problems, and developing performance indicators are illustrated.
Abstract: Over the last three decades, a large number of evolutionary algorithms have been developed for solving multiobjective optimization problems. However, there lacks an up-to-date and comprehensive software platform for researchers to properly benchmark existing algorithms and for practitioners to apply selected algorithms to solve their real-world problems. The demand of such a common tool becomes even more urgent, when the source code of many proposed algorithms has not been made publicly available. To address these issues, we have developed a MATLAB platform for evolutionary multi-objective optimization in this paper, called PlatEMO, which includes more than 50 multi-objective evolutionary algorithms and more than 100 multi-objective test problems, along with several widely used performance indicators. With a user-friendly graphical user interface, PlatEMO enables users to easily compare several evolutionary algorithms at one time and collect statistical results in Excel or LaTeX files. More importantly, PlatEMO is completely open source, such that users are able to develop new algorithms on the basis of it. This paper introduces the main features of PlatEMO and illustrates how to use it for performing comparative experiments, embedding new algorithms, creating new test problems, and developing performance indicators. Source code of PlatEMO is now available at: http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html.

828 citations


Journal ArticleDOI
TL;DR: The results of the proposed algorithm on the test functions show that this algorithm benefits from high convergence and coverage, and its applicability is solving challenging real-world problems as well.
Abstract: This paper proposes a multi-objective version of the recently proposed Ant Lion Optimizer (ALO) called Multi-Objective Ant Lion Optimizer (MOALO). A repository is first employed to store non-dominated Pareto optimal solutions obtained so far. Solutions are then chosen from this repository using a roulette wheel mechanism based on the coverage of solutions as antlions to guide ants towards promising regions of multi-objective search spaces. To prove the effectiveness of the algorithm proposed, a set of standard unconstrained and constrained test functions is employed. Also, the algorithm is applied to a variety of multi-objective engineering design problems: cantilever beam design, brushless dc wheel motor design, disk brake design, 4-bar truss design, safety isolating transformer design, speed reduced design, and welded beam deign. The results are verified by comparing MOALO against NSGA-II and MOPSO. The results of the proposed algorithm on the test functions show that this algorithm benefits from high convergence and coverage. The results of the algorithm on the engineering design problems demonstrate its applicability is solving challenging real-world problems as well.

446 citations


Journal ArticleDOI
TL;DR: A comprehensive survey of the decomposition-based MOEAs proposed in the last decade is presented, including development of novel weight vector generation methods, use of new decomposition approaches, efficient allocation of computational resources, modifications in the reproduction operation, mating selection and replacement mechanism, hybridizing decompositions- and dominance-based approaches, etc.
Abstract: Decomposition is a well-known strategy in traditional multiobjective optimization. However, the decomposition strategy was not widely employed in evolutionary multiobjective optimization until Zhang and Li proposed multiobjective evolutionary algorithm based on decomposition (MOEA/D) in 2007. MOEA/D proposed by Zhang and Li decomposes a multiobjective optimization problem into a number of scalar optimization subproblems and optimizes them in a collaborative manner using an evolutionary algorithm (EA). Each subproblem is optimized by utilizing the information mainly from its several neighboring subproblems. Since the proposition of MOEA/D in 2007, decomposition-based MOEAs have attracted significant attention from the researchers. Investigations have been undertaken in several directions, including development of novel weight vector generation methods, use of new decomposition approaches, efficient allocation of computational resources, modifications in the reproduction operation, mating selection and replacement mechanism, hybridizing decomposition- and dominance-based approaches, etc. Furthermore, several attempts have been made at extending the decomposition-based framework to constrained multiobjective optimization, many-objective optimization, and incorporate the preference of decision makers. Additionally, there have been many attempts at application of decomposition-based MOEAs to solve complex real-world optimization problems. This paper presents a comprehensive survey of the decomposition-based MOEAs proposed in the last decade.

436 citations


Journal ArticleDOI
TL;DR: It is demonstrated that a slight change in the problem formulations of DTLZ and WFG deteriorates the performance of those algorithms, and the reason for the performance deterioration is explained.
Abstract: Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the literature. Those algorithms often show surprisingly good performance on widely used DTLZ and WFG test problems. The performance of those algorithms has continued to be improved. The aim of this paper is to show our concern that such a performance improvement race may lead to the overspecialization of developed algorithms for the frequently used many-objective test problems. In this paper, we first explain the DTLZ and WFG test problems. Next, we explain many-objective evolutionary algorithms characterized by the use of systematically generated weight vectors. Then we discuss the relation between the features of the test problems and the search mechanisms of weight vector-based algorithms such as multiobjective evolutionary algorithm based on decomposition (MOEA/D), nondominated sorting genetic algorithm III (NSGA-III), MOEA/dominance and decomposition (MOEA/DD), and $\theta $ -dominance based evolutionary algorithm ( $\theta$ -DEA). Through computational experiments, we demonstrate that a slight change in the problem formulations of DTLZ and WFG deteriorates the performance of those algorithms. After explaining the reason for the performance deterioration, we discuss the necessity of more general test problems and more flexible algorithms.

430 citations


Journal ArticleDOI
15 Apr 2017-Energy
TL;DR: In order to get the final optimal solution in the real-world multi-objective optimization problems, trade-off methods including a priori methods, interactive methods, Pareto-dominated methods and new dominance methods are utilized.

377 citations


Journal ArticleDOI
TL;DR: In this paper, a novel Moth Swarm Algorithm (MSA) inspired by the orientation of moths towards moonlight was proposed to solve constrained optimal power flow (OPF) problem.

340 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a tutorial and survey of recent research and development efforts addressing this issue by using the technique of multi-objective optimization (MOO), and elaborate on various prevalent approaches conceived for MOO, such as the family of mathematical programming-based scalarization methods, and a variety of other advanced optimization techniques.
Abstract: Wireless sensor networks (WSNs) have attracted substantial research interest, especially in the context of performing monitoring and surveillance tasks. However, it is challenging to strike compelling tradeoffs amongst the various conflicting optimization criteria, such as the network’s energy dissipation, packet-loss rate, coverage, and lifetime. This paper provides a tutorial and survey of recent research and development efforts addressing this issue by using the technique of multi-objective optimization (MOO). First, we provide an overview of the main optimization objectives used in WSNs. Then, we elaborate on various prevalent approaches conceived for MOO, such as the family of mathematical programming-based scalarization methods, the family of heuristics/metaheuristics-based optimization algorithms, and a variety of other advanced optimization techniques. Furthermore, we summarize a range of recent studies of MOO in the context of WSNs, which are intended to provide useful guidelines for researchers to understand the referenced literature. Finally, we discuss a range of open problems to be tackled by future research.

311 citations


Journal ArticleDOI
TL;DR: A comprehensive review of the important studies on design optimization for structural crashworthiness and energy absorption is provided in this article, where the authors provide some conclusions and recommendations to enable academia and industry to become more aware of the available capabilities and recent developments in design optimization.
Abstract: Optimization for structural crashworthiness and energy absorption has become an important topic of research attributable to its proven benefits to public safety and social economy. This paper provides a comprehensive review of the important studies on design optimization for structural crashworthiness and energy absorption. First, the design criteria used in crashworthiness and energy absorption are reviewed and the surrogate modeling to evaluate these criteria is discussed. Second, multiobjective optimization, optimization under uncertainties and topology optimization are reviewed from concepts, algorithms to applications in relation to crashworthiness. Third, the crashworthy structures are summarized, from generically novel structural configurations to industrial applications. Finally, some conclusions and recommendations are provided to enable academia and industry to become more aware of the available capabilities and recent developments in design optimization for structural crashworthiness and energy absorption.

295 citations


Journal ArticleDOI
TL;DR: Experimental results show that the proposed PSO-based multi-objective feature selection algorithm can automatically evolve a set of nondominated solutions, and it is a highly competitive feature selection method for solving cost-based feature selection problems.
Abstract: Feature selection is an important data-preprocessing technique in classification problems such as bioinformatics and signal processing Generally, there are some situations where a user is interested in not only maximizing the classification performance but also minimizing the cost that may be associated with features This kind of problem is called cost-based feature selection However, most existing feature selection approaches treat this task as a single-objective optimization problem This paper presents the first study of multi-objective particle swarm optimization PSO for cost-based feature selection problems The task of this paper is to generate a Pareto front of nondominated solutions, that is, feature subsets, to meet different requirements of decision-makers in real-world applications In order to enhance the search capability of the proposed algorithm, a probability-based encoding technology and an effective hybrid operator, together with the ideas of the crowding distance, the external archive, and the Pareto domination relationship, are applied to PSO The proposed PSO-based multi-objective feature selection algorithm is compared with several multi-objective feature selection algorithms on five benchmark datasets Experimental results show that the proposed algorithm can automatically evolve a set of nondominated solutions, and it is a highly competitive feature selection method for solving cost-based feature selection problems

Journal ArticleDOI
TL;DR: In this article, a two-stage approach for allocation of EV parking lots and distributed renewable resources (DRRs) in power distribution network is proposed, which considers both the economical benefits of parking lot investor and the technical constraints of distribution network operator.

Journal ArticleDOI
TL;DR: This paper presents a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization, which leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics.
Abstract: In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

Journal ArticleDOI
TL;DR: An early developed and computationally expensive strength Pareto-based evolutionary algorithm is revived by introducing an efficient reference direction-based density estimator, a new fitness assignment scheme, and a new environmental selection strategy, for handling both multiobjective and many-objective problems.
Abstract: While Pareto-based multiobjective optimization algorithms continue to show effectiveness for a wide range of practical problems that involve mostly two or three objectives, their limited application for many-objective problems, due to the increasing proportion of nondominated solutions and the lack of sufficient selection pressure, has also been gradually recognized. In this paper, we revive an early developed and computationally expensive strength Pareto-based evolutionary algorithm by introducing an efficient reference direction-based density estimator, a new fitness assignment scheme, and a new environmental selection strategy, for handling both multiobjective and many-objective problems. The performance of the proposed algorithm is validated and compared with some state-of-the-art algorithms on a number of test problems. Experimental studies demonstrate that the proposed method shows very competitive performance on both multiobjective and many-objective problems considered in this paper. Besides, our extensive investigations and discussions reveal an interesting finding, that is, diversity-first-and-convergence-second selection strategies may have great potential to deal with many-objective optimization.

Journal ArticleDOI
TL;DR: Empirical studies demonstrate that the proposed surrogate-assisted cooperative swarm optimization algorithm is able to find high-quality solutions for high-dimensional problems on a limited computational budget.
Abstract: Surrogate models have shown to be effective in assisting metaheuristic algorithms for solving computationally expensive complex optimization problems. The effectiveness of existing surrogate-assisted metaheuristic algorithms, however, has only been verified on low-dimensional optimization problems. In this paper, a surrogate-assisted cooperative swarm optimization algorithm is proposed, in which a surrogate-assisted particle swarm optimization (PSO) algorithm and a surrogate-assisted social learning-based PSO (SL-PSO) algorithm cooperatively search for the global optimum. The cooperation between the PSO and the SL-PSO consists of two aspects. First, they share promising solutions evaluated by the real fitness function. Second, the SL-PSO focuses on exploration while the PSO concentrates on local search. Empirical studies on six 50-D and six 100-D benchmark problems demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems on a limited computational budget.

Journal ArticleDOI
TL;DR: In this article, a multi-objective optimization model for a green supply chain management scheme that minimizes the inherent risk occurred by hazardous materials, associated carbon emission and economic cost is presented.

Journal ArticleDOI
TL;DR: This paper develops a chromosome that can describe a feasible schedule such that meta-heuristics can be applied and innovatively adopts an improved nondominated sorting genetic algorithm to solve the optimization problem for the first time.
Abstract: With the interaction of discrete-event and continuous processes, it is challenging to schedule crude oil operations in a refinery. This paper studies the optimization problem of finding a detailed schedule to realize a given refining schedule. This is a multiobjective optimization problem with a combinatorial nature. Since the original problem cannot be directly solved by using heuristics and meta-heuristics, the problem is transformed into an assignment problem of charging tanks and distillers. Based on such a transformation, by analyzing the properties of the problem, this paper develops a chromosome that can describe a feasible schedule such that meta-heuristics can be applied. Then, it innovatively adopts an improved nondominated sorting genetic algorithm to solve the problem for the first time. An industrial case study is used to test the proposed solution method. The results show that the method makes a significant performance improvement and is applicable to real-life refinery scheduling problems.

Journal ArticleDOI
TL;DR: This work investigates an energy-efficient PFSP with sequence-dependent setup and controllable transportation time from a real-world manufacturing enterprise and proposes a hybrid multi-objective backtracking search algorithm (HMOBSA) to solve this problem.

Journal ArticleDOI
TL;DR: This paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of nICHing methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment, and poses challenges and research questions on nichin that are yet to be appropriately addressed.
Abstract: Multimodal optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specifically-designed diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. This paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, this paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multiobjective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, this paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving.

Journal ArticleDOI
TL;DR: The results prove the feasibility of the presented model and the applicability of the developed solution methodology.

Journal ArticleDOI
TL;DR: The empirical results indicate that although the compared algorithms exhibit slightly different capabilities in dealing with the challenges in the test problems, none of them are able to efficiently solve these optimization problems, calling for the need for developing new EAs dedicated to large-scale multiobjective and many-objective optimization.
Abstract: The interests in multiobjective and many-objective optimization have been rapidly increasing in the evolutionary computation community. However, most studies on multiobjective and many-objective optimization are limited to small-scale problems, despite the fact that many real-world multiobjective and many-objective optimization problems may involve a large number of decision variables. As has been evident in the history of evolutionary optimization, the development of evolutionary algorithms (EAs) for solving a particular type of optimization problems has undergone a co-evolution with the development of test problems. To promote the research on large-scale multiobjective and many-objective optimization, we propose a set of generic test problems based on design principles widely used in the literature of multiobjective and many-objective optimization. In order for the test problems to be able to reflect challenges in real-world applications, we consider mixed separability between decision variables and nonuniform correlation between decision variables and objective functions. To assess the proposed test problems, six representative evolutionary multiobjective and many-objective EAs are tested on the proposed test problems. Our empirical results indicate that although the compared algorithms exhibit slightly different capabilities in dealing with the challenges in the test problems, none of them are able to efficiently solve these optimization problems, calling for the need for developing new EAs dedicated to large-scale multiobjective and many-objective optimization.

Journal ArticleDOI
TL;DR: Experimental results show that the proposed algorithm is very competitive for dynamic multiobjective optimization in comparison with state-of-the-art methods.
Abstract: This paper presents a new algorithm, called steady-state and generational evolutionary algorithm, which combines the fast and steadily tracking ability of steady-state algorithms and good diversity preservation of generational algorithms, for handling dynamic multiobjective optimization. Unlike most existing approaches for dynamic multiobjective optimization, the proposed algorithm detects environmental changes and responds to them in a steady-state manner. If a change is detected, it reuses a portion of outdated solutions with good distribution and relocates a number of solutions close to the new Pareto front based on the information collected from previous environments and the new environment. This way, the algorithm can quickly adapt to changing environments and thus is expected to provide a good tracking ability. The proposed algorithm is tested on a number of bi- and three-objective benchmark problems with different dynamic characteristics and difficulties. Experimental results show that the proposed algorithm is very competitive for dynamic multiobjective optimization in comparison with state-of-the-art methods.

Journal ArticleDOI
TL;DR: The results are compared quantitatively and qualitatively with other algorithms using a variety of performance indicators, which show the merits of this new MOMVO algorithm in solving a wide range of problems with different characteristics.
Abstract: This work proposes the multi-objective version of the recently proposed Multi-Verse Optimizer (MVO) called Multi-Objective Multi-Verse Optimizer (MOMVO). The same concepts of MVO are used for converging towards the best solutions in a multi-objective search space. For maintaining and improving the coverage of Pareto optimal solutions obtained, however, an archive with an updating mechanism is employed. To test the performance of MOMVO, 80 case studies are employed including 49 unconstrained multi-objective test functions, 10 constrained multi-objective test functions, and 21 engineering design multi-objective problems. The results are compared quantitatively and qualitatively with other algorithms using a variety of performance indicators, which show the merits of this new MOMVO algorithm in solving a wide range of problems with different characteristics.

Journal ArticleDOI
TL;DR: The main idea is that in the environmental selection, offspring individuals are selected one by one based on a computationally efficient convergence indicator to increase the selection pressure toward the Pareto optimal front.
Abstract: Most existing multiobjective evolutionary algorithms experience difficulties in solving many-objective optimization problems due to their incapability to balance convergence and diversity in the high-dimensional objective space. In this paper, we propose a novel many-objective evolutionary algorithm using a one-by-one selection strategy. The main idea is that in the environmental selection, offspring individuals are selected one by one based on a computationally efficient convergence indicator to increase the selection pressure toward the Pareto optimal front. In the one-by-one selection, once an individual is selected, its neighbors are de-emphasized using a niche technique to guarantee the diversity of the population, in which the similarity between individuals is evaluated by means of a distribution indicator. In addition, different methods for calculating the convergence indicator are examined and an angle-based similarity measure is adopted for effective evaluations of the distribution of solutions in the high-dimensional objective space. Moreover, corner solutions are utilized to enhance the spread of the solutions and to deal with scaled optimization problems. The proposed algorithm is empirically compared with eight state-of-the-art many-objective evolutionary algorithms on 80 instances of 16 benchmark problems. The comparative results demonstrate that the overall performance of the proposed algorithm is superior to the compared algorithms on the optimization problems studied in this paper.

BookDOI
01 Feb 2017
TL;DR: This paper presents a meta-anatomical architecture for multi-Objective Optimization of multi-Product Microbial Cell Factory for Multiple Objectives and some of the principles used in this architecture were previously described in the book “Optimal Design of Chemical Processes for Multiple Economic and Environmental Objectives.”
Abstract: Introduction (G P Rangaiah) Multi-Objective Optimization Applications in Chemical Engineering (Masuduzzaman & G P Rangaiah) Techniques: Multi-Objective Evolutionary Algorithms: A Review of the State of the Art and Some of Their Applications in Chemical Engineering (A L Jaimes & C A Coello Coello) The Jumping Gene Adaptations of Multi-Objective Genetic Algorithm and Simulated Annealing (M Ramteke & S K Gupta) Multi-Objective Optimization Using Surrogate-Assisted Evolutionary Algorithm (T Ray) Why Use Interactive Multi-Objective Optimization in Chemical Process Design? (K Miettinen & J Hakanen) Net Flow and Rough Set: Two Methods for Ranking the Pareto Domain (J Thibault) Applications: Multi-Objective Optimization of Gas-Phase Refrigeration Systems for LNG (N Shah et al.) A Multi-Objective Evolutionary Algorithm for Practical Residue Catalytic Cracking Feed Optimization (K C Tan et al.) Optimal Design of Chemical Processes for Multiple Economic and Environmental Objectives (E S Q Lee et al.) Multi-Objective Emergency Response Optimization around Chemical Plants (P S Georgiadou et al.) Array Informatics Using Multi-Objective Genetic Algorithms: From Gene Expressions to Gene Networks (S Garg) Multi-Objective Optimization of a Multi-Product Microbial Cell Factory for Multiple Objectives - A Paradigm for Metabolic Pathway Recipe (F C Lee et al.).

Journal ArticleDOI
TL;DR: In this paper, the authors investigated optimization techniques developed from past to present to solve this problem and especially to determine the efficacy of multi-objective optimization approaches, which is an important indicator of development.
Abstract: Energy resources are an irreplaceable life resource in the current world, with the use and management of these an important indicator of development. In parallel to the developing world economy, the increase in the use of energy resources is increasingly consuming existing fossil sources and also increasing the amount of greenhouse gas released into the atmosphere. As a result of resulting material and environmental concerns, renewable energy resources have begun to be used as alternative energy resources. These resources have advantages such as sustainability and environmental friendliness, in addition to having disadvantages such as higher investment costs and also system reliability is insufficient to provide for continuous demand for energy. To resolve these disadvantages, hybrid systems have been developed involving the use of more than one type of renewable energy resource and/or use with traditional energy resources and/or integration with storage systems. The use of these systems requires finding the solution to optimization problems including one or more objectives such as sizing the system to minimize energy costs, system management to balance the uncertainty of energy produced or reduction of greenhouse gas emissions. This article was prepared with the aim of investigating optimization techniques developed from past to present to solve this problem and especially to determine the efficacy of multi-objective optimization approaches.

Journal ArticleDOI
01 Feb 2017
TL;DR: A non-dominance sort based Hybrid Particle Swarm Optimization (HPSO) algorithm to handle the workflow scheduling problem with multiple conflicting objective functions on IaaS clouds and the performance of proposed heuristic is compared with state-of-art multi-objective meta-heuristics.
Abstract: Now-a-days, Cloud computing is a technology which eludes provision cost while providing scalability and elasticity to accessible resources on a pay-per-use basis. To satisfy the increasing demand of the computing power to execute large scale scientific workflow applications, workflow scheduling is the main challenging issue in Infrastructure-as-a-Service (IaaS) clouds. As workflow scheduling belongs to NP-complete problem, so, meta-heuristic approaches are more preferred option. Users often specified deadline and budget constraint for scheduling these workflow applications over cloud resources. But these constraints are in conflict with each other, i.e., the cheaper resources are slow as compared to the expensive resources. Most of the existing studies try to optimize only one of the objectives, i.e., either time minimization or cost minimization under user specified Quality of Service (QoS) constraints. But due to the complexity of workflows and dynamic nature of cloud, a trade-off solution is required to make a balance between execution time and processing cost. To address these issues, this paper presents a non-dominance sort based Hybrid Particle Swarm Optimization (HPSO) algorithm to handle the workflow scheduling problem with multiple conflicting objective functions on IaaS clouds. The proposed algorithm is a hybrid of our previously proposed Budget and Deadline constrained Heterogeneous Earliest Finish Time (BDHEFT) algorithm and multi-objective PSO. The HPSO heuristic tries to optimize two conflicting objectives, namely, makespan and cost under the deadline and budget constraints. Along with these two conflicting objectives, energy consumed of created workflow schedule is also minimized. The proposed algorithm gives a set of Pareto Optimal solutions from which the user can choose the best solution. The performance of proposed heuristic is compared with state-of-art multi-objective meta-heuristics like NSGA-II, MOPSO, and e -FDPSO. The simulation analysis substantiates that the solutions obtained with proposed heuristic deliver better convergence and uniform spacing among the solutions as compared to others. Hence it is applicable to solve a wide class of multi-objective optimization problems for scheduling scientific workflows over IaaS clouds.

Journal ArticleDOI
TL;DR: A new diversity metric for many-objective optimization, which is an accumulation of the dissimilarity in the population, is proposed, which can more accurately assess the diversity of solutions in various situations.
Abstract: Maintaining diversity is one important aim of multiobjective optimization. However, diversity for many-objective optimization problems is less straightforward to define than for multiobjective optimization problems. Inspired by measures for biodiversity, we propose a new diversity metric for many-objective optimization, which is an accumulation of the dissimilarity in the population, where an $ L_{ p}$ -norm-based ( $\,{ p}{ ) distance is adopted to measure the dissimilarity of solutions. Empirical results demonstrate our proposed metric can more accurately assess the diversity of solutions in various situations. We compare the diversity of the solutions obtained by four popular many-objective evolutionary algorithms using the proposed diversity metric on a large number of benchmark problems with two to ten objectives. The behaviors of different diversity maintenance methodologies in those algorithms are discussed in depth based on the experimental results. Finally, we show that the proposed diversity measure can also be employed for enhancing diversity maintenance or reference set generation in many-objective optimization.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper investigated the performance of a representative apartment building in the city of Shanghai and evaluated the optimum solutions by using a developed optimization approach, which includes three major steps of 1) setting the model for multi-objective optimization, 2) sensitivity analysis for reducing the dimension of input variables, and 3) multiorientive optimization by using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) coupled with the Artificial Neural Network (ANN), among which a novel indicator for evaluating the annual indoor thermal comfort of residential buildings of Shanghai named Comfort Time

Journal ArticleDOI
TL;DR: Simulation results illustrate that the proposed methodologies can outperform some counterparts providing sequences with good autocorrelation features especially in the discrete phase/binary case.
Abstract: This paper is focused on the design of phase sequences with good (aperiodic) autocorrelation properties in terms of peak sidelobe level and integrated sidelobe level. The problem is formulated as a biobjective Pareto optimization forcing either a continuous or a discrete phase constraint at the design stage. An iterative procedure based on the coordinate descent method is introduced to deal with the resulting optimization problems that are nonconvex and NP-hard in general. Each iteration of the devised method requires the solution of a nonconvex min–max problem. It is handled either through a novel bisection or an FFT-based method respectively for the continuous and the discrete phase constraint. Additionally, a heuristic approach to initialize the procedures employing the $l_p$ -norm minimization technique is proposed. Simulation results illustrate that the proposed methodologies can outperform some counterparts providing sequences with good autocorrelation features especially in the discrete phase/binary case.