scispace - formally typeset
Search or ask a question

Showing papers on "Neurodegeneration published in 2006"


Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations


Journal ArticleDOI
15 Jun 2006-Nature
TL;DR: It is found that mice lacking Atg7 specifically in the central nervous system showed behavioural defects, including abnormal limb-clasping reflexes and a reduction in coordinated movement, and died within 28 weeks of birth, and that impairment of autophagy is implicated in the pathogenesis of neurodegenerative disorders involving ubiquitin-containing inclusion bodies.
Abstract: Protein quality-control, especially the removal of proteins with aberrant structures, has an important role in maintaining the homeostasis of non-dividing neural cells. In addition to the ubiquitin-proteasome system, emerging evidence points to the importance of autophagy--the bulk protein degradation pathway involved in starvation-induced and constitutive protein turnover--in the protein quality-control process. However, little is known about the precise roles of autophagy in neurons. Here we report that loss of Atg7 (autophagy-related 7), a gene essential for autophagy, leads to neurodegeneration. We found that mice lacking Atg7 specifically in the central nervous system showed behavioural defects, including abnormal limb-clasping reflexes and a reduction in coordinated movement, and died within 28 weeks of birth. Atg7 deficiency caused massive neuronal loss in the cerebral and cerebellar cortices. Notably, polyubiquitinated proteins accumulated in autophagy-deficient neurons as inclusion bodies, which increased in size and number with ageing. There was, however, no obvious alteration in proteasome function. Our results indicate that autophagy is essential for the survival of neural cells, and that impairment of autophagy is implicated in the pathogenesis of neurodegenerative disorders involving ubiquitin-containing inclusion bodies.

3,349 citations


Journal ArticleDOI
16 Mar 2006-Nature
TL;DR: It is found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-β assembly, which is proposed to be Aβ*56 (Aβ star 56), which may contribute to cognitive deficits associated with Alzheimer's disease.
Abstract: Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-beta precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-beta protein amyloidosis. Young Tg2576 mice ( 14 months old) form abundant neuritic plaques containing amyloid-beta (refs 3-6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-beta assembly, which we term Abeta*56 (Abeta star 56). Abeta*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Abeta*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.

2,693 citations


Journal ArticleDOI
TL;DR: 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and may be useful models of intraneuronal Aβ42-induced neurodegeneration and amyloids plaque formation.
Abstract: Mutations in the genes for amyloid precursor protein (APP) and presenilins (PS1, PS2) increase production of β-amyloid 42 (Aβ42) and cause familial Alzheimer's disease (FAD). Transgenic mice that express FAD mutant APP and PS1 overproduce Aβ42 and exhibit amyloid plaque pathology similar to that found in AD, but most transgenic models develop plaques slowly. To accelerate plaque development and investigate the effects of very high cerebral Aβ42 levels, we generated APP/PS1 double transgenic mice that coexpress five FAD mutations (5XFAD mice) and additively increase Aβ42 production. 5XFAD mice generate Aβ42 almost exclusively and rapidly accumulate massive cerebral Aβ42 levels. Amyloid deposition (and gliosis) begins at 2 months and reaches a very large burden, especially in subiculum and deep cortical layers. Intraneuronal Aβ42 accumulates in 5XFAD brain starting at 1.5 months of age (before plaques form), is aggregated (as determined by thioflavin S staining), and occurs within neuron soma and neurites. Some amyloid deposits originate within morphologically abnormal neuron soma that contain intraneuronal Aβ. Synaptic markers synaptophysin, syntaxin, and postsynaptic density-95 decrease with age in 5XFAD brain, and large pyramidal neurons in cortical layer 5 and subiculum are lost. In addition, levels of the activation subunit of cyclin-dependent kinase 5, p25, are elevated significantly at 9 months in 5XFAD brain, although an upward trend is observed by 3 months of age, before significant neurodegeneration or neuron loss. Finally, 5XFAD mice have impaired memory in the Y-maze. Thus, 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and may be useful models of intraneuronal Aβ42-induced neurodegeneration and amyloid plaque formation.

2,471 citations


Journal ArticleDOI
TL;DR: After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.
Abstract: The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.

2,430 citations


Journal ArticleDOI
20 Oct 2006-Cell
TL;DR: Increase in PGC-1alpha levels dramatically protects neural cells in culture from oxidative-stressor-mediated death, providing a potential target for the therapeutic manipulation of these important endogenous toxins.

1,999 citations


Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Improving macroautophagy with drugs such as rapamycin could offer a tractable therapeutic strategy for a number of late-onset neurodegenerative diseases.
Abstract: Many late-onset neurodegenerative diseases, including Parkinson's disease and Huntington's disease, are associated with the formation of intracellular aggregates by toxic proteins. It is therefore crucial to understand the factors that regulate the steady-state levels of these 'toxins', at both the synthetic and degradation stages. The degradation pathways acting on such aggregate-prone cytosolic proteins include the ubiquitin-proteasome system and macroautophagy. Dysfunction of the ubiquitin-proteasome or macroautophagy pathways might contribute to the pathology of various neurodegenerative conditions. However, enhancing macroautophagy with drugs such as rapamycin could offer a tractable therapeutic strategy for a number of these diseases.

1,626 citations


Journal ArticleDOI
29 Jun 2006-Nature
TL;DR: The genetic evidence clearly establishes that Parkin and PINK1 act in a common pathway in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons.
Abstract: The PINK1 gene was recently implicated in autosomal recessive juvenile Parkinson's disease. Two groups have studied the equivalent gene in the fruitfly Drosophila, and find that it localizes to mitochondria in vivo and is essential to mitochondrial function. It also interacts genetically with parkin, another familial Parkinson's disease-related gene that encodes Parkin, an E3 ubiquitin ligase. The pink1-parkin pathway in Drosophila should provide a powerful tool for the study of the molecular mechanisms of neurodegeneration and for screening agents of possible therapeutic interest. Autosomal recessive juvenile parkinsonism (AR-JP) is an early-onset form of Parkinson's disease characterized by motor disturbances and dopaminergic neurodegeneration1,2. To address its underlying molecular pathogenesis, we generated and characterized loss-of-function mutants of Drosophila PTEN-induced putative kinase 1 (PINK1 )3, a novel AR-JP-linked gene4. Here, we show that PINK1 mutants exhibit indirect flight muscle and dopaminergic neuronal degeneration accompanied by locomotive defects. Furthermore, transmission electron microscopy analysis and a rescue experiment with Drosophila Bcl-2 demonstrated that mitochondrial dysfunction accounts for the degenerative changes in all phenotypes of PINK1 mutants. Notably, we also found that PINK1 mutants share marked phenotypic similarities with parkin mutants. Transgenic expression of Parkin markedly ameliorated all PINK1 loss-of-function phenotypes, but not vice versa, suggesting that Parkin functions downstream of PINK1. Taken together, our genetic evidence clearly establishes that Parkin and PINK1 act in a common pathway in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons.

1,605 citations


Journal ArticleDOI
TL;DR: Augmenting CX3CR1 signaling may protect against microglial neurotoxicity, whereas CNS penetration by pharmaceutical CX2CR1 antagonists could increase neuronal vulnerability.
Abstract: Microglia, the resident inflammatory cells of the CNS, are the only CNS cells that express the fractalkine receptor (CX3CR1). Using three different in vivo models, we show that CX3CR1 deficiency dysregulates microglial responses, resulting in neurotoxicity. Following peripheral lipopolysaccharide injections, Cx3cr1−/− mice showed cell-autonomous microglial neurotoxicity. In a toxic model of Parkinson disease and a transgenic model of amyotrophic lateral sclerosis, Cx3cr1−/− mice showed more extensive neuronal cell loss than Cx3cr1+ littermate controls. Augmenting CX3CR1 signaling may protect against microglial neurotoxicity, whereas CNS penetration by pharmaceutical CX3CR1 antagonists could increase neuronal vulnerability.

1,359 citations


Journal ArticleDOI
TL;DR: Loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia are described.
Abstract: Neurodegenerative disorders such as Parkinson and Alzheimer disease cause motor and cognitive dysfunction and belong to a heterogeneous group of common and disabling disorders. Although the complex molecular pathophysiology of neurodegeneration is largely unknown, major advances have been achieved by elucidating the genetic defects underlying mendelian forms of these diseases. This has led to the discovery of common pathophysiological pathways such as enhanced oxidative stress, protein misfolding and aggregation and dysfunction of the ubiquitin-proteasome system. Here, we describe loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia (PARK9, Kufor-Rakeb syndrome). Whereas the wild-type protein was located in the lysosome of transiently transfected cells, the unstable truncated mutants were retained in the endoplasmic reticulum and degraded by the proteasome. Our findings link a class of proteins with unknown function and substrate specificity to the protein networks implicated in neurodegeneration and parkinsonism.

1,112 citations


Journal ArticleDOI
06 Oct 2006-Cell
TL;DR: It is reported here that mutant huntingtin causes disruption of mitochondrial function by inhibiting expression of PGC-1alpha, a transcriptional coactivator that regulates several metabolic processes, including mitochondrial biogenesis and respiration.

Journal ArticleDOI
TL;DR: The premise of this review is that apolipoprotein (apo) E4 is much more than a contributing factor to neurodegeneration, and potential therapeutic strategies are suggested, including the use of "structure correctors" to convert apoE4 to an "apoE3-like" molecule, protease inhibitors to prevent the generation of toxic apOE4 fragments, and "mitochondrial protector" to prevent cellular energy disruption.
Abstract: The premise of this review is that apolipoprotein (apo) E4 is much more than a contributing factor to neurodegeneration. ApoE has critical functions in redistributing lipids among CNS cells for normal lipid homeostasis, repairing injured neurons, maintaining synapto-dendritic connections, and scavenging toxins. In multiple pathways affecting neuropathology, including Alzheimer’s disease, apoE acts directly or in concert with age, head injury, oxidative stress, ischemia, inflammation, and excess amyloid β peptide production to cause neurological disorders, accelerating progression, altering prognosis, or lowering age of onset. We envision that unique structural features of apoE4 are responsible for apoE4-associated neuropathology. Although the structures of apoE2, apoE3, and apoE4 are in dynamic equilibrium, apoE4, which is detrimental in a variety of neurological disorders, is more likely to assume a pathological conformation. Importantly, apoE4 displays domain interaction (an interaction between the N- and C-terminal domains of the protein that results in a compact structure) and molten globule formation (the formation of stable, reactive intermediates with potentially pathological activities). In response to CNS stress or injury, neurons can synthesize apoE. ApoE4 uniquely undergoes neuron-specific proteolysis, resulting in bioactive toxic fragments that enter the cytosol, alter the cytoskeleton, disrupt mitochondrial energy balance, and cause cell death. Our findings suggest potential therapeutic strategies, including the use of “structure correctors” to convert apoE4 to an “apoE3-like” molecule, protease inhibitors to prevent the generation of toxic apoE4 fragments, and “mitochondrial protectors” to prevent cellular energy disruption.

Journal ArticleDOI
25 May 2006-Nature
TL;DR: It is shown that PDI is S-nitrosylated, a reaction transferring a nitric oxide group to a critical cysteine thiol to affect protein function, which prevents neurotoxicity associated with ER stress and protein misfolding in neurodegenerative disorders.
Abstract: Stress proteins located in the cytosol or endoplasmic reticulum (ER) maintain cell homeostasis and afford tolerance to severe insults. In neurodegenerative diseases, several chaperones ameliorate the accumulation of misfolded proteins triggered by oxidative or nitrosative stress, or of mutated gene products. Although severe ER stress can induce apoptosis, the ER withstands relatively mild insults through the expression of stress proteins or chaperones such as glucose-regulated protein (GRP) and protein-disulphide isomerase (PDI), which assist in the maturation and transport of unfolded secretory proteins. PDI catalyses thiol-disulphide exchange, thus facilitating disulphide bond formation and rearrangement reactions. PDI has two domains that function as independent active sites with homology to the small, redox-active protein thioredoxin. During neurodegenerative disorders and cerebral ischaemia, the accumulation of immature and denatured proteins results in ER dysfunction, but the upregulation of PDI represents an adaptive response to protect neuronal cells. Here we show, in brains manifesting sporadic Parkinson's or Alzheimer's disease, that PDI is S-nitrosylated, a reaction transferring a nitric oxide (NO) group to a critical cysteine thiol to affect protein function. NO-induced S-nitrosylation of PDI inhibits its enzymatic activity, leads to the accumulation of polyubiquitinated proteins, and activates the unfolded protein response. S-nitrosylation also abrogates PDI-mediated attenuation of neuronal cell death triggered by ER stress, misfolded proteins or proteasome inhibition. Thus, PDI prevents neurotoxicity associated with ER stress and protein misfolding, but NO blocks this protective effect in neurodegenerative disorders through the S-nitrosylation of PDI.

Journal ArticleDOI
TL;DR: It is shown that inhibition of Drosophila Pink1 function results in energy depletion, shortened lifespan, and degeneration of select indirect flight muscles and dopaminergic neurons, and the level of Parkin protein is significantly reduced in dPink1 RNA interference animals.
Abstract: Mutations in Pink1, a gene encoding a Ser/Thr kinase with a mitochondrial-targeting signal, are associated with Parkinson’s disease (PD), the most common movement disorder characterized by selective loss of dopaminergic neurons. The mechanism by which loss of Pink1 leads to neurodegeneration is not understood. Here we show that inhibition of Drosophila Pink1 (dPink1) function results in energy depletion, shortened lifespan, and degeneration of select indirect flight muscles and dopaminergic neurons. The muscle pathology was preceded by mitochondrial enlargement and disintegration. These phenotypes could be rescued by the wild type but not the pathogenic C-terminal deleted form of human Pink1 (hPink1). The muscle and dopaminergic phenotypes associated with dPink1 inactivation show similarity to that seen in parkin mutant flies and could be suppressed by the overexpression of Parkin but not DJ-1. Consistent with the genetic rescue results, we find that, in dPink1 RNA interference (RNAi) animals, the level of Parkin protein is significantly reduced. Together, these results implicate Pink1 and Parkin in a common pathway that regulates mitochondrial physiology and cell survival in Drosophila.

Journal ArticleDOI
TL;DR: Overall these studies indicate that oxidative stress and the inflammatory cascade, working in concert, are important in the pathogenetic cascade of neurodegeneration in AD, suggesting that therapeutic efforts aimed at both of these mechanisms may be beneficial.
Abstract: There is increasing evidence that free radical damage to brain lipids, carbohydrates, proteins, and DNA is involved in neuron death in neurodegenerative disorders. The largest number of studies have been performed in Alzheimer's disease (AD) where there is considerable support for the oxidative stress hypothesis in the pathogenesis of neuron degeneration. In autopsied brain there is an increase in lipid peroxidation, a decline in polyunsaturated fatty acids (PUFA) and an increase in 4-hydroxynonenal (HNE), a neurotoxic aldehyde product of PUFA oxidation. Increased protein oxidation and a marked decline in oxidative-sensitive enzymes, glutamine synthetase and creatinine kinase, are found in the brain in AD. Increased DNA oxidation, especially 8-hydroxy-2′-deoxyguanosine (8-OHdG) is present in the brain in AD. Immunohistochemical studies show the presence of oxidative stress products in neurofibrillary tangles and senile plaques in AD. Markers of lipid peroxidation (HNE, isoprostanes) and DNA (8-OHdG) are increased in CSF in AD. In addition, inflammatory response markers (the complement cascade, cytokines, acute phase reactants and proteases) are present in the brain in AD. These findings, coupled with epidemiologic studies showing that anti-inflammatory agents slow the progression or delay the onset of AD, suggest that inflammation plays a role in AD. Overall these studies indicate that oxidative stress and the inflammatory cascade, working in concert, are important in the pathogenetic cascade of neurodegeneration in AD, suggesting that therapeutic efforts aimed at both of these mechanisms may be beneficial.

Journal ArticleDOI
TL;DR: Understanding of the normative biology of astrocytes has been aided by the development of animal models in which astroCyte-specific proteins and pathways have been manipulated, and mouse models of neurodegenerative diseases have revealedAstrocyte- specific pathologies that contribute to Neurodegeneration.
Abstract: The term neurodegenerative disease refers to the principal pathology associated with disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease and Parkinson's disease, and it is presumed that neurodegeneration results in the clinical findings seen in patients with these diseases. Decades of pathological and physiological studies have focused on neuronal abnormalities in these disorders, but it is becoming increasingly evident that astrocytes are also important players in these and other neurological disorders. Our understanding of the normative biology of astrocytes has been aided by the development of animal models in which astrocyte-specific proteins and pathways have been manipulated, and mouse models of neurodegenerative diseases have also revealed astrocyte-specific pathologies that contribute to neurodegeneration. These models have led to the development of targeted therapies for pathways in which astrocytes participate, and this research should ultimately influence the clinical treatment of neurodegenerative disorders.

Journal ArticleDOI
19 May 2006-Cell
TL;DR: An interaction network for 54 proteins involved in 23 inherited ataxias is developed and expanded by incorporating literature-curated and evolutionarily conserved interactions and provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders.

Journal ArticleDOI
TL;DR: It is found that loss of DJ-1 leads to deficits in NQO1 [NAD(P)H quinone oxidoreductase 1], a detoxification enzyme, attributed to a loss of Nrf2 (nuclear factor erythroid 2-related factor), a master regulator of antioxidant transcriptional responses.
Abstract: DJ-1/PARK7, a cancer- and Parkinson's disease (PD)-associated protein, protects cells from toxic stresses. However, the functional basis of this protection has remained elusive. We found that loss of DJ-1 leads to deficits in NQO1 [NAD(P)H quinone oxidoreductase 1], a detoxification enzyme. This deficit is attributed to a loss of Nrf2 (nuclear factor erythroid 2-related factor), a master regulator of antioxidant transcriptional responses. DJ-1 stabilizes Nrf2 by preventing association with its inhibitor protein, Keap1, and Nrf2's subsequent ubiquitination. Without intact DJ-1, Nrf2 protein is unstable, and transcriptional responses are thereby decreased both basally and after induction. This effect of DJ-1 on Nrf2 is present in both transformed lines and primary cells across human and mouse species. DJ-1's effect on Nrf2 and subsequent effects on antioxidant responses may explain how DJ-1 affects the etiology of both cancer and PD, which are seemingly disparate disorders. Furthermore, this DJ-1/Nrf2 functional axis presents a therapeutic target in cancer treatment and justifies DJ-1 as a tumor biomarker.

Journal ArticleDOI
TL;DR: Using multiphoton imaging, it is shown that dopamine depletion leads to a rapid and profound loss of spines and glutamatergic synapses on striatopallidal MSNs but not on neighboring striatonigral MSNs, triggered by a new mechanism—dysregulation of intraspine Cav1.3 L-type Ca2+ channels.
Abstract: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models

Journal ArticleDOI
13 Jun 2006-Cell
TL;DR: Caspase-6-resistant mutant htt mice are protected against neurotoxicity induced by multiple stressors including NMDA, quinolinic acid (QA), and staurosporine and highlight the significant role of htt proteolysis and excitotoxicity in HD.

Journal ArticleDOI
TL;DR: It is shown that TNF-α is the key cytokine that stimulates extensive microglial glutamate release in an autocrine manner by up-regulating glutaminase to cause excitoneurotoxicity and it is demonstrated that the connexin 32 hemichannel of the gap junction is another main source of glutamate release from microglia besides glutamate transporters.

Journal ArticleDOI
TL;DR: Overall, these data show that the perforant path input from the entorhinal cortex to the DG is compromised both structurally and functionally, and this pathology is manifested in memory defects long before significant plaque deposition.
Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which numerous mouse models have been generated. In both AD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of β-amyloid (Aβ)-containing plaques and neurodegeneration. Characterization of the timing and nature of preplaque dysfunction is important for understanding the progression of this disease and to identify pathways and molecular targets for therapeutic intervention. Hence, we have examined the progression of dysfunction at the morphological, functional, and behavioral levels in the Tg2576 mouse model of AD. Our data show that decreased dendritic spine density, impaired long-term potentiation (LTP), and behavioral deficits occurred months before plaque deposition, which was first detectable at 18 months of age. We detected a decrease in spine density in the outer molecular layer of the dentate gyrus (DG) beginning as early as 4 months of age. Furthermore, by 5 months, there was a decline in LTP in the DG after perforant path stimulation and impairment in contextual fear conditioning. Moreover, an increase in the Aβ42/Aβ40 ratio was first observed at these early ages. However, total amyloid levels did not significantly increase until ≈18 months of age, at which time significant increases in reactive astrocytes and microglia could be observed. Overall, these data show that the perforant path input from the entorhinal cortex to the DG is compromised both structurally and functionally, and this pathology is manifested in memory defects long before significant plaque deposition.

Journal ArticleDOI
TL;DR: A broad perspective on cellular mechanisms and potential consequences of oxidative stress in glaucoma is provided, as ROS stimulate the antigen presenting ability of glial cells and also function as co-stimulatory molecules during antigen presentation.

Journal ArticleDOI
TL;DR: In this article, it was shown that increased NO concentrations can lead to the formation of peroxynitrite, which can then interact with superoxide anion, generated by the mitochondria or by other mechanisms.
Abstract: Following stimulation of NMDA receptors, neurons transiently synthesize nitric oxide (NO) in a calcium/calmodulin-dependent manner through the activation of neuronal NO synthase. Nitric oxide acts as a messenger, activating soluble guanylyl cyclase and participating in the transduction signalling pathways involving cyclic GMP. Nitric oxide also binds to cytochrome c oxidase, and is able to inhibit cell respiration in a process that is reversible and in competition with oxygen. This action can also lead to the release of superoxide anion from the mitochondrial respiratory chain. Here, we discuss recent evidence that this mitochondrial interaction represents a molecular switch for cell signalling pathways involved in the control of physiological functions. These include superoxide- or oxygen-dependent modulation of gene transcription, calcium-dependent cell signalling responses, changes in the mitochondrial membrane potential or AMP-activated protein kinase-dependent control of glycolysis. In pathophysiological conditions, such as brain ischaemia or neurological disorders, NO is formed excessively by NMDA receptor over-activation in neurons, or by inducible NO synthase from neighbouring glia (microglial cells and astrocytes). Elevated NO concentrations can then interact with superoxide anion, generated by the mitochondria or by other mechanisms, leading to the formation of the powerful oxidant species peroxynitrite. During pathological conditions activation of the NAD(+)-consuming enzyme poly(APD-ribose) polymerase-1 (PARP-1) is also a likely mechanism for NO-mediated energy failure and neurotoxicity. Activation of PARP-1 is, however, a repair process, which in milder forms of oxidative stress protects neurons from death. Thus, whilst NO plays a physiological role in neuronal cell signalling, its over-production may cause neuronal energy compromise leading to neurodegeneration.


Journal ArticleDOI
07 Sep 2006-Nature
TL;DR: It is demonstrated that disruption of translational fidelity in terminally differentiated neurons leads to the accumulation of misfolded proteins and cell death, and provide a novel mechanism underlying neurodegeneration.
Abstract: Misfolded proteins are associated with several pathological conditions including neurodegeneration. Although some of these abnormally folded proteins result from mutations in genes encoding disease-associated proteins (for example, repeat-expansion diseases), more general mechanisms that lead to misfolded proteins in neurons remain largely unknown. Here we demonstrate that low levels of mischarged transfer RNAs (tRNAs) can lead to an intracellular accumulation of misfolded proteins in neurons. These accumulations are accompanied by upregulation of cytoplasmic protein chaperones and by induction of the unfolded protein response. We report that the mouse sticky mutation, which causes cerebellar Purkinje cell loss and ataxia, is a missense mutation in the editing domain of the alanyl-tRNA synthetase gene that compromises the proofreading activity of this enzyme during aminoacylation of tRNAs. These findings demonstrate that disruption of translational fidelity in terminally differentiated neurons leads to the accumulation of misfolded proteins and cell death, and provide a novel mechanism underlying neurodegeneration.


Journal ArticleDOI
TL;DR: It is suggested that genetically EAAC1-null (Slc1a1−/−) mice have reduced neuronal glutathione levels and, with aging, develop brain atrophy and behavioral changes, and thatEAAC1 deficiency thereby leads to impaired neuronal glutATHione metabolism, oxidative stress and age-dependent neurodegeneration.
Abstract: Uptake of the neurotransmitter glutamate is effected primarily by transporters expressed on astrocytes, and downregulation of these transporters leads to seizures and neuronal death. Neurons also express a glutamate transporter, termed excitatory amino acid carrier-1 (EAAC1), but the physiological function of this transporter remains uncertain. Here we report that genetically EAAC1-null (Slc1a1(-/-)) mice have reduced neuronal glutathione levels and, with aging, develop brain atrophy and behavioral changes. EAAC1 can also rapidly transport cysteine, an obligate precursor for neuronal glutathione synthesis. Neurons in the hippocampal slices of EAAC1(-/-) mice were found to have reduced glutathione content, increased oxidant levels and increased susceptibility to oxidant injury. These changes were reversed by treating the EAAC1(-/-) mice with N-acetylcysteine, a membrane-permeable cysteine precursor. These findings suggest that EAAC1 is the primary route for neuronal cysteine uptake and that EAAC1 deficiency thereby leads to impaired neuronal glutathione metabolism, oxidative stress and age-dependent neurodegeneration.

Journal ArticleDOI
23 Mar 2006-Nature
TL;DR: It is found that Pin1 binds to the phosphorylated Thr 668-Pro motif in APP and accelerates its isomerization by over 1,000-fold, regulating the APP intracellular domain between two conformations, as visualized by NMR.
Abstract: Neuropathological hallmarks of Alzheimer's disease are neurofibrillary tangles composed of tau and neuritic plaques comprising amyloid-beta peptides (Abeta) derived from amyloid precursor protein (APP), but their exact relationship remains elusive. Phosphorylation of tau and APP on certain serine or threonine residues preceding proline affects tangle formation and Abeta production in vitro. Phosphorylated Ser/Thr-Pro motifs in peptides can exist in cis or trans conformations, the conversion of which is catalysed by the Pin1 prolyl isomerase. Pin1 has been proposed to regulate protein function by accelerating conformational changes, but such activity has never been visualized and the biological and pathological significance of Pin1 substrate conformations is unknown. Notably, Pin1 is downregulated and/or inhibited by oxidation in Alzheimer's disease neurons, Pin1 knockout causes tauopathy and neurodegeneration, and Pin1 promoter polymorphisms appear to associate with reduced Pin1 levels and increased risk for late-onset Alzheimer's disease. However, the role of Pin1 in APP processing and Abeta production is unknown. Here we show that Pin1 has profound effects on APP processing and Abeta production. We find that Pin1 binds to the phosphorylated Thr 668-Pro motif in APP and accelerates its isomerization by over 1,000-fold, regulating the APP intracellular domain between two conformations, as visualized by NMR. Whereas Pin1 overexpression reduces Abeta secretion from cell cultures, knockout of Pin1 increases its secretion. Pin1 knockout alone or in combination with overexpression of mutant APP in mice increases amyloidogenic APP processing and selectively elevates insoluble Abeta42 (a major toxic species) in brains in an age-dependent manner, with Abeta42 being prominently localized to multivesicular bodies of neurons, as shown in Alzheimer's disease before plaque pathology. Thus, Pin1-catalysed prolyl isomerization is a novel mechanism to regulate APP processing and Abeta production, and its deregulation may link both tangle and plaque pathologies. These findings provide new insight into the pathogenesis and treatment of Alzheimer's disease.

Journal ArticleDOI
05 Oct 2006-Neuron
TL;DR: Insight into mechanisms underlying alpha-synuclein-mediated neurodegeneration provide novel targets for the discovery of disease-modifying therapies for PD and related neurodegnerative alpha- synucleinopathies.