scispace - formally typeset
Search or ask a question

Showing papers on "Receptor tyrosine kinase published in 2020"


Journal ArticleDOI
25 Mar 2020-Nature
TL;DR: A regulatory module associated with tumour-antigen uptake that reduces DC1 functionality in human and mouse cancers is uncovered and modulating this program can rescue antitumor immunity in mice.
Abstract: Checkpoint blockade therapies have improved cancer treatment, but such immunotherapy regimens fail in a large subset of patients. Conventional type 1 dendritic cells (DC1s) control the response to checkpoint blockade in preclinical models and are associated with better overall survival in patients with cancer, reflecting the specialized ability of these cells to prime the responses of CD8+ T cells1–3. Paradoxically, however, DC1s can be found in tumours that resist checkpoint blockade, suggesting that the functions of these cells may be altered in some lesions. Here, using single-cell RNA sequencing in human and mouse non-small-cell lung cancers, we identify a cluster of dendritic cells (DCs) that we name ‘mature DCs enriched in immunoregulatory molecules’ (mregDCs), owing to their coexpression of immunoregulatory genes (Cd274, Pdcd1lg2 and Cd200) and maturation genes (Cd40, Ccr7 and Il12b). We find that the mregDC program is expressed by canonical DC1s and DC2s upon uptake of tumour antigens. We further find that upregulation of the programmed death ligand 1 protein—a key checkpoint molecule—in mregDCs is induced by the receptor tyrosine kinase AXL, while upregulation of interleukin (IL)-12 depends strictly on interferon-γ and is controlled negatively by IL-4 signalling. Blocking IL-4 enhances IL-12 production by tumour-antigen-bearing mregDC1s, expands the pool of tumour-infiltrating effector T cells and reduces tumour burden. We have therefore uncovered a regulatory module associated with tumour-antigen uptake that reduces DC1 functionality in human and mouse cancers. After taking up tumour-associated antigens, dendritic cells in mouse and human tumours upregulate a regulatory gene program that limits dendritic cell immunostimulatory function, and modulating this program can rescue antitumor immunity in mice.

371 citations


Journal ArticleDOI
20 Mar 2020-Cancers
TL;DR: The technological advances of artificial intelligence, chemoproteomics, and microfluidics are described in elaborating powerful strategies that could be used in providing more efficient and selective small molecules inhibitors of RTKs.
Abstract: Receptor tyrosine kinases (RTKs) are key regulatory signaling proteins governing cancer cell growth and metastasis. During the last two decades, several molecules targeting RTKs were used in oncology as a first or second line therapy in different types of cancer. However, their effectiveness is limited by the appearance of resistance or adverse effects. In this review, we summarize the main features of RTKs and their inhibitors (RTKIs), their current use in oncology, and mechanisms of resistance. We also describe the technological advances of artificial intelligence, chemoproteomics, and microfluidics in elaborating powerful strategies that could be used in providing more efficient and selective small molecules inhibitors of RTKs. Finally, we discuss the interest of therapeutic combination of different RTKIs or with other molecules for personalized treatments, and the challenge for effective combination with less toxic and off-target effects.

227 citations


Journal ArticleDOI
TL;DR: A number of clinical trials are exploring several important questions regarding treatment sequencing, combinatorial strategies, and the use of CDK4/6 inhibitors in the adjuvant and neoadjuvant settings, thereby further expanding and refining the clinical application of CDk4/ 6 inhibitors for patients with breast cancer.

210 citations


Journal ArticleDOI
20 Feb 2020-Cancers
TL;DR: The current understanding of the signaling pathways involved in the development and initiation of HCC is elaborated and the potential targets for therapeutic drug development are anticipated.
Abstract: Hepatocellular carcinoma (HCC) is a complex biological process and is often diagnosed at advanced stages with no effective treatment options. With advances in tumor biology and molecular genetic profiling, several different signaling pathways and molecular mechanisms have been identified as responsible for initiating and promoting HCC. Targeting these critical pathways, which include the receptor tyrosine kinase pathways, the Ras mitogen-activated protein kinase (Ras/Raf/MAPK), the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), the Wnt/β-catenin signaling pathway, the ubiquitin/proteasome degradation and the hedgehog signaling pathway has led to the identification of novel therapeutics for HCC treatment. In this review, we elaborated on our current understanding of the signaling pathways involved in the development and initiation of HCC and anticipate the potential targets for therapeutic drug development.

179 citations


Journal ArticleDOI
TL;DR: The preclinical evidence for mechanisms of angiogenic resistance is highlighted and novel therapeutic approaches that might be exploited are suggested with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.
Abstract: Tumor growth and metastasis rely on tumor vascular network for the adequate supply of oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling, and stromal cell interactions. Numerous pro-angiogenic drivers have been identified, the most important of which is the vascular endothelial growth factor (VEGF). The importance of pro-angiogenic inducers in tumor growth, invasion and extravasation make them an excellent therapeutic target in several types of cancers. Hence, the number of anti-angiogenic agents developed for cancer treatment has risen over the past decade, with at least eighty drugs being investigated in preclinical studies and phase I-III clinical trials. To date, the most common approaches to the inhibition of the VEGF axis include the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal benefits could be secondary to primary or acquired resistance, through the activation of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and stromal cell interactions. Thus, complementary approaches such as the combination of these inhibitors with agents targeting alternative mechanisms of blood vessel formation are urgently needed. This review provides an updated overview on the pathophysiology of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic and anti-angiogenic agents that have been developed to date. Finally, it highlights the preclinical evidence for mechanisms of angiogenic resistance and suggests novel therapeutic approaches that might be exploited with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.

177 citations


Journal ArticleDOI
TL;DR: This review explores EGFR structure and its mutations, signaling pathway, ligand binding and EGFR dimerization, EGF/EGFR interaction, and the progress in the development of EGFR inhibitors.
Abstract: The epidermal growth factor receptor (EGFR) belongs to the ERBB family of tyrosine kinase receptors. EGFR signaling cascade is a key regulator in cell proliferation, differentiation, division, survival, and cancer development. In this review, the EGFR structure and its mutations, signaling pathway, ligand binding and EGFR dimerization, EGF/EGFR interaction, and the progress in the development of EGFR inhibitors have been explored.

177 citations


Journal ArticleDOI
TL;DR: The role of cadherins in selected signaling mechanisms involved in tumor growth is discussed, and cadherin-targeting drugs seem to limit the progression of malignant tumor.
Abstract: Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, differentiation and carcinogenesis. Cadherins are inseparably connected with catenins, forming cadherin-catenin complexes, which are crucial for cell-to-cell adherence. Any dysfunction or destabilization of cadherin-catenin complex may result in tumor progression. Epithelial mesenchymal transition (EMT) is a mechanism in which epithelial cadherin (E-cadherin) expression is lost during tumor progression. However, during tumorigenesis, many processes take place, and downregulation of E-cadherin, nuclear β-catenin and p120 catenin (p120) signaling are among the most critical. Additional signaling pathways, such as Receptor tyrosine kinase (RTK), Rho GTPases, phosphoinositide 3-kinase (PI3K) and Hippo affect cadherin cell-cell adhesion and also contribute to tumor progression and metastasis. Many signaling pathways may be activated during tumorigenesis; thus, cadherin-targeting drugs seem to limit the progression of malignant tumor. This review discusses the role of cadherins in selected signaling mechanisms involved in tumor growth. The clinical importance of cadherin will be discussed in cases of human and animal cancers.

126 citations


Journal ArticleDOI
TL;DR: It is shown that expression of m6A demethylase ALKBH5 is regulated by chromatin state alteration during leukemogenesis of human acute myeloid leukemia (AML), and ALKBh5 is required for maintaining leukemia stem cell (LSC) function but is dispensable for normal hematopoiesis.

124 citations


Journal ArticleDOI
TL;DR: This work lays the groundwork for exploiting oncogenic mechanosignalling as a vulnerability at the onset of tumorigenesis, including tumour prevention strategies.
Abstract: Defining the interplay between the genetic events and microenvironmental contexts necessary to initiate tumorigenesis in normal cells is a central endeavour in cancer biology. We found that receptor tyrosine kinase (RTK)–Ras oncogenes reprogram normal, freshly explanted primary mouse and human cells into tumour precursors, in a process requiring increased force transmission between oncogene-expressing cells and their surrounding extracellular matrix. Microenvironments approximating the normal softness of healthy tissues, or blunting cellular mechanotransduction, prevent oncogene-mediated cell reprogramming and tumour emergence. However, RTK–Ras oncogenes empower a disproportional cellular response to the mechanical properties of the cell’s environment, such that when cells experience even subtle supra-physiological extracellular-matrix rigidity they are converted into tumour-initiating cells. These regulations rely on YAP/TAZ mechanotransduction, and YAP/TAZ target genes account for a large fraction of the transcriptional responses downstream of oncogenic signalling. This work lays the groundwork for exploiting oncogenic mechanosignalling as a vulnerability at the onset of tumorigenesis, including tumour prevention strategies. Receptor tyrosine kinase (RTK)–Ras oncogenes have now been shown to reprogram normal primary human and mouse cells into tumour precursors by empowering cellular mechanotransduction, in a process requiring permissive extracellular-matrix rigidity and intracellular YAP/TAZ/Rac mechanical signalling sustained by activated oncogenes.

107 citations


Journal ArticleDOI
TL;DR: In both biochemical and cell signaling experiments, tucatinib inhibits HER2 kinase activity with single-digit nanomolar potency and provides exceptional selectivity for HER2 compared with the related receptor tyrosine kinase EGFR, with a >1,000-fold enhancement in potency for Her2 in cell signaling assays.
Abstract: HER2 is a transmembrane tyrosine kinase receptor that mediates cell growth, differentiation, and survival. HER2 is overexpressed in approximately 20% of breast cancers and in subsets of gastric, colorectal, and esophageal cancers. Both antibody and small-molecule drugs that target HER2 and block its tyrosine kinase activity are effective in treating HER2-driven cancers. In this article, we describe the preclinical properties of tucatinib, an orally available, reversible HER2-targeted small-molecule tyrosine kinase inhibitor. In both biochemical and cell signaling experiments, tucatinib inhibits HER2 kinase activity with single-digit nanomolar potency and provides exceptional selectivity for HER2 compared with the related receptor tyrosine kinase EGFR, with a >1,000-fold enhancement in potency for HER2 in cell signaling assays. Tucatinib potently inhibits signal transduction downstream of HER2 and HER3 through the MAPK and PI3K/AKT pathways and is selectively cytotoxic in HER2-amplified breast cancer cell lines in vitro. In vivo, tucatinib is active in multiple HER2+ tumor models as a single agent and shows enhanced antitumor activity in combination with trastuzumab or docetaxel, resulting in improved rates of partial and complete tumor regression. These preclinical data, taken together with the phase-I tucatinib clinical trial results demonstrating preliminary safety and activity, establish the unique pharmacologic properties of tucatinib and underscore the rationale for investigating its utility in HER2+ cancers. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/19/4/976/F1.large.jpg.

101 citations


Journal ArticleDOI
TL;DR: It is shown that mutation of the FLT3 gene is the most frequent genetic alteration and a poor prognostic factor in acute myeloid leukemia (AML) patients and high‐dose chemotherapy and allogeneic hematopoietic stem cell transplantation cannot sufficiently improve the prognosis.
Abstract: FMS-like tyrosine kinase 3 (FLT3) is a type III receptor tyrosine kinase that plays an important role in hematopoietic cell survival, proliferation and differentiation. The most clinically important point is that mutation of the FLT3 gene is the most frequent genetic alteration and a poor prognostic factor in acute myeloid leukemia (AML) patients. There are two major types of FLT3 mutations: internal tandem duplication mutations in the juxtamembrane domain (FLT3-ITD) and point mutations or deletion in the tyrosine kinase domain (FLT3-TKD). Both mutant FLT3 molecules are activated through ligand-independent dimerization and trans-phosphorylation. Mutant FLT3 induces the activation of multiple intracellular signaling pathways, mainly STAT5, MAPK and AKT signals, leading to cell proliferation and anti-apoptosis. Because high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation cannot sufficiently improve the prognosis, clinical development of FLT3 kinase inhibitors expected. Although several FLT3 inhibitors have been developed, it takes more than 20 years from the first identification of FLT3 mutations until FLT3 inhibitors become clinically available for AML patients with FLT3 mutations. To date, three FLT3 inhibitors have been clinically approved as monotherapy or combination therapy with conventional chemotherapeutic agents in Japan and/or Europe and United states. However, several mechanisms of resistance to FLT3 inhibitors have already become apparent during their clinical trials. The resistance mechanisms are complex and emerging resistant clones are heterogenous. Further basic and clinical studies are required to establish the best therapeutic strategy for AML patients with FLT3 mutations.

Journal ArticleDOI
TL;DR: Recent developments in the rapidly advancing field of allosteric kinase inhibitors are reviewed including examples of proteolysis targeting chimeras (PROTACs), and unique binding modes for each type of inhibitors are highlighted to address future opportunities in this area.
Abstract: Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.

Journal ArticleDOI
TL;DR: Two different resistance mechanisms in NSCLC targeted therapies are discussed, namely changes in the targeted oncogenes (on-target resistance) and changes in other related signaling pathways (off- target resistance) in tumor cells.

Journal ArticleDOI
TL;DR: A dual functionalized brain targeting nano-inhibitor to simultaneously target EGFR and MET pathways is developed, and it is shown this can overcome temozolomide resistance in glioma.
Abstract: Activation of receptor tyrosine kinase (RTK) protein is frequently observed in malignant progression of gliomas. In this study, the crosstalk activation of epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) signaling pathways is demonstrated to contribute to temozolomide (TMZ) resistance, resulting in an unfavorable prognosis for patients with glioblastoma. To simultaneously mitigate EGFR and MET activation, a dual functionalized brain-targeting nanoinhibitor, BIP-MPC-NP, is developed by conjugating Inherbin3 and cMBP on the surface of NHS-PEG8-Mal modified MPC-nanoparticles. In the presence of BIP-MPC-NP, DNA damage repair is attenuated and TMZ sensitivity is enhanced via the down-regulation of E2F1 mediated by TTP in TMZ resistant glioma. In vivo magnetic resonance imaging (MRI) shows a significant repression in tumor growth and a prolonged survival of mice after injection of the BIP-MPC-NP and TMZ. These results demonstrate the promise of this nanoinhibitor as a feasible strategy overcoming TMZ resistance in glioma.

Journal ArticleDOI
TL;DR: The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer.
Abstract: Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions.

Journal ArticleDOI
TL;DR: Using recent progress in understanding the structures of active RTK signaling units, selected mechanisms by which ligands couple receptor activation to distinct signaling outputs are discussed.

Journal ArticleDOI
TL;DR: The common mutation BRAFV600 in primary melanomas activates the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway and the introduction of proto-oncogene B-Raf and MeKi inhibitors (BRAFi and MEKi) was a breakthrough in the treatment of these cancers.
Abstract: The common mutation BRAFV600 in primary melanomas activates the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway and the introduction of proto-oncogene B-Raf (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors (BRAFi and MEKi) was a breakthrough in the treatment of these cancers However, 15-20% of tumors harbor primary resistance to this therapy, and moreover, patients develop acquired resistance to treatment Understanding the molecular phenomena behind resistance to BRAFi/MEKis is indispensable in order to develop novel targeted therapies Most often, resistance develops due to either the reactivation of the MAPK/ERK pathway or the activation of alternative kinase signaling pathways including phosphatase and tensin homolog (PTEN), neurofibromin 1 (NF-1) or RAS signaling The hyperactivation of tyrosine kinase receptors, such as the receptor of the platelet-derived growth factor β (PDFRβ), insulin-like growth factor 1 receptor (IGF-1R) and the receptor for hepatocyte growth factor (HGF), lead to the induction of the AKT/3-phosphoinositol kinase (PI3K) pathway Another pathway resulting in BRAFi/MEKi resistance is the hyperactivation of epidermal growth factor receptor (EGFR) signaling or the deregulation of microphthalmia-associated transcription factor (MITF)

Journal ArticleDOI
01 Jan 2020-Oncogene
TL;DR: It is shown that ERBB3 mutations are not uncommon in many cancer types, and the recent results of several studies evaluating different therapeutic approaches for treating patients with oncogenic ERBB2 mutations are presented.
Abstract: HER3, a member of the EGFR family of receptor tyrosine kinases coded by the ERBB3 gene, plays an important role in cancer, despite its lack of intrinsic kinase activity. As with genes coding for potential heterodimeric partners of HER3, EGFR, and HER2, oncogenic mutations of ERBB3 have been explored by several studies. In this review, we discuss the evidence presenting ERBB3 somatic mutations as potential tumoral drivers. We then show that ERBB3 mutations are not uncommon in many cancer types. Finally, we present the recent results of several studies evaluating different therapeutic approaches for treating patients with oncogenic ERBB3 mutations.

Posted ContentDOI
09 Apr 2020-bioRxiv
TL;DR: The findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform to activate RTKs and RAS GTPases and a general principle by which cells can organize oncogenic signaling.
Abstract: Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner to initiate MAPK signaling Formation of membraneless protein granules by RTK oncoproteins is both necessary and sufficient for RAS/MAPK signaling output in cells Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform to activate RTKs and RAS GTPases and a general principle by which cells can organize oncogenic signaling


Journal ArticleDOI
TL;DR: Recent advances are summarized and an updated overview of transmembrane RLKs in Arabidopsis is provided to contribute to a better understanding of the fundamental signaling mechanisms.
Abstract: Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.

Journal ArticleDOI
12 Aug 2020-Cells
TL;DR: The role of EGFR in regulating differentiation and functions of neurons and neuroglia is examined and its involvement in regeneration after injury and in the onset of neurodegenerative diseases is examined.
Abstract: Epidermal growth factor receptor (EGFR) is the first discovered member of the receptor tyrosine kinase superfamily and plays a fundamental role during embryogenesis and in adult tissues, being involved in growth, differentiation, maintenance and repair of various tissues and organs. The role of EGFR in the regulation of tissue development and homeostasis has been thoroughly investigated and it has also been demonstrated that EGFR is a driver of tumorigenesis. In the nervous system, other growth factors, and thus other receptors, are important for growth, differentiation and repair of the tissue, namely neurotrophins and neurotrophins receptors. For this reason, for a long time, the role of EGFR in the nervous system has been underestimated and poorly investigated. However, EGFR is expressed both in the central and peripheral nervous systems and it has been demonstrated to have specific important neurotrophic functions, in particular in the central nervous system. This review discusses the role of EGFR in regulating differentiation and functions of neurons and neuroglia. Furthermore, its involvement in regeneration after injury and in the onset of neurodegenerative diseases is examined.

Journal ArticleDOI
TL;DR: The mechanism by which EGFR-mediated signalling pathways participate in regulating autophagy is generalized to investigate how to use the existing knowledge to identify potential cancer therapeutic targets.

Journal ArticleDOI
09 Jul 2020-Cancers
TL;DR: The structure and activation of the Gas6/Axl signaling pathway, GAS6 and AXL expression patterns in the tumor microenvironment, mechanisms of Axl-mediated tumor immune response, and the role of Gas6 / Axl signaling in immune cell recruitment are discussed.
Abstract: Receptor tyrosine kinases have been shown to dysregulate a number of pathways associated with tumor development, progression, and metastasis. Axl is a receptor tyrosine kinase expressed in many cancer types and has been associated with therapy resistance and poor clinical prognosis and outcomes. In addition, Axl and its ligand growth arrest specific 6 (Gas6) protein are expressed by a number of host cells. The Gas6/Axl signaling pathway has been implicated in the promotion of tumor cell proliferation, survival, migration, invasion, angiogenesis, and immune evasion. As a result, Axl is an attractive, novel therapeutic target to impair multiple stages of tumor progression from both neoplastic and host cell axes. This review focuses on the role of the Gas6/Axl signaling pathway in promoting the immunosuppressive tumor microenvironment, as immune evasion is considered one of the hallmarks of cancer. The review discusses the structure and activation of the Gas6/Axl signaling pathway, GAS6 and AXL expression patterns in the tumor microenvironment, mechanisms of Axl-mediated tumor immune response, and the role of Gas6/Axl signaling in immune cell recruitment.

Book ChapterDOI
TL;DR: It may be of value to simultaneously combine multiple EGFR inhibitors or use EGFR inhibitor with regulators of other important cancer phenotype regulating molecules, such as STAT3, or involved in important processes such as DNA repair.
Abstract: The Epidermal Growth Factor Receptor (EGFR) is frequently expressed at elevated levels in different forms of cancer and expression often correlates positively with cancer progression and poor prognosis. Different mutant forms of this protein also contribute to cancer heterogeneity. A constitutively active form of EGFR, EGFRvIII is one of the most important variants. EGFR is responsible for the maintenance and functions of cancer stem cells (CSCs), including stemness, metabolism, immunomodulatory-activity, dormancy and therapy-resistance. EGFR regulates these pathways through several signaling cascades, and often cooperates with other RTKs to exert further control. Inhibitors of EGFR have been extensively studied and display some anticancer efficacy. However, CSCs can also acquire resistance to EGFR inhibitors making effective therapy even more difficult. To ameliorate this limitation of EGFR inhibitors when used as single agents, it may be of value to simultaneously combine multiple EGFR inhibitors or use EGFR inhibitors with regulators of other important cancer phenotype regulating molecules, such as STAT3, or involved in important processes such as DNA repair. These combinatorial approaches require further experimental confirmation, but if successful would expand and improve therapeutic outcomes employing EGFR inhibitors as one arm of the therapy.

Journal ArticleDOI
TL;DR: It is suggested that the exuberant blood clotting and immune hyper-reaction seen in patients with COVID-19 may be exacerbated by depletion of the same regulator, protein S, which is both an anticoagulant in the blood coagulation cascade and an activating ligand for the immunosuppressive TAM family of receptor tyrosine kinases.
Abstract: We suggest that the exuberant blood clotting and immune hyper-reaction seen in patients with COVID-19 may be exacerbated by depletion of the same regulator. This agent is protein S, which is both an anticoagulant in the blood coagulation cascade and an activating ligand for the immunosuppressive TAM family of receptor tyrosine kinases. In this Comment, Greg Lemke and Gregg Silverman propose that the excessive blood clotting and immune activation seen in severe COVID-19 may be mechanistically linked through protein S, a ligand for the immunosuppressive TAM receptor family.

Journal ArticleDOI
TL;DR: The data suggests that concurrent, vertical inhibition of multiple intracellular kinase signaling pathways is important for repolarization of M2 macrophages to M1 phenotype, and by utilizing dual-inhibitor loaded supramolecular nanoparticles, further increase the ability to produce more M1 macrophage as compared to M2macrophages in the tumor microenvironment.

Journal ArticleDOI
TL;DR: Research deciphering the role of regulatory subunits in PI3K signaling and their involvement in human disease is highlighted, highlighting the importance of understanding the presence of regulatory binding partners.
Abstract: The Class I phosphoinositide 3-kinases (PI3Ks) are a group of heterodimeric lipid kinases that regulate crucial cellular processes including proliferation, survival, growth, and metabolism. The diversity in functions controlled by the various catalytic isoforms (p110α, p110β, p110δ, and p110γ) depends on their abilities to be activated by distinct stimuli such as receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCRs), and the Ras family of small G-proteins. A major factor determining the ability of each p110 enzyme to be activated is the presence of regulatory binding partners. Given the overwhelming evidence for the involvement of PI3Ks in diseases such as cancer, inflammation, immunodeficiency and diabetes, an understanding of how these regulatory proteins influence PI3K function is essential. This article highlights research deciphering the role of regulatory subunits in PI3K signaling and their involvement in human disease.

Journal ArticleDOI
TL;DR: These studies provide a broad systems-level view of how specific driver oncogenes remodel the surfaceome and the glycoproteome in a cell autologous fashion, and suggest possible surface targets, and combinations thereof, for drug and biomarker discovery.
Abstract: The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here we apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK, and AKT. We find that each oncogene has somewhat different surfaceomes, but the functions of these proteins are harmonized by common biological themes including up-regulation of nutrient transporters, down-regulation of adhesion molecules and tumor suppressing phosphatases, and alteration in immune modulators. Addition of a potent MEK inhibitor that blocks MAPK signaling brings each oncogene-induced surfaceome back to a common state reflecting the strong dependence of the oncogene on the MAPK pathway to propagate signaling. Cell surface protein capture is mediated by covalent tagging of surface glycans, yet current methods do not afford sequencing of intact glycopeptides. Thus, we complement the surfaceome data with whole cell glycoproteomics enabled by a recently developed technique called activated ion electron transfer dissociation (AI-ETD). We found massive oncogene-induced changes to the glycoproteome and differential increases in complex hybrid glycans, especially for KRAS and HER2 oncogenes. Overall, these studies provide a broad systems-level view of how specific driver oncogenes remodel the surfaceome and the glycoproteome in a cell autologous fashion, and suggest possible surface targets, and combinations thereof, for drug and biomarker discovery.

Journal ArticleDOI
TL;DR: It is demonstrated that drug-induced changes to ErK dynamics alter the conditions under which cells proliferate, opening the door to high-throughput screens using live-cell biosensors and revealing that cell proliferation integrates information from Erk dynamics as well as additional permissive cues.
Abstract: Summary Complex, time-varying responses have been observed widely in cell signaling, but how specific dynamics are generated or regulated is largely unknown. One major obstacle has been that high-throughput screens are typically incompatible with the live-cell assays used to monitor dynamics. Here, we address this challenge by screening a library of 429 kinase inhibitors and monitoring extracellular-regulated kinase (Erk) activity over 5 h in more than 80,000 single primary mouse keratinocytes. Our screen reveals both known and uncharacterized modulators of Erk dynamics, including inhibitors of non-epidermal growth factor receptor (EGFR) receptor tyrosine kinases (RTKs) that increase Erk pulse frequency and overall activity. Using drug treatment and direct optogenetic control, we demonstrate that drug-induced changes to Erk dynamics alter the conditions under which cells proliferate. Our work opens the door to high-throughput screens using live-cell biosensors and reveals that cell proliferation integrates information from Erk dynamics as well as additional permissive cues.