scispace - formally typeset
Search or ask a question

Showing papers on "Zinc published in 2019"


Journal ArticleDOI
TL;DR: The first demonstration of constructing a flexible 3D carbon nanotube (CNT) framework as a Zn plating/stripping scaffold is constituted to achieve a dendrite-free robust Zn anode, enabling a substantially stable Zn//MnO2 battery with 88.7% capacity retention after 1000 cycles and remarkable mechanical flexibility.
Abstract: The current boom of safe and renewable energy storage systems is driving the recent renaissance of Zn-ion batteries. However, the notorious tip-induced dendrite growth on the Zn anode restricts their further application. Herein, the first demonstration of constructing a flexible 3D carbon nanotube (CNT) framework as a Zn plating/stripping scaffold is constituted to achieve a dendrite-free robust Zn anode. Compared with the pristine deposited Zn electrode, the as-fabricated Zn/CNT anode affords lower Zn nucleation overpotential and more homogeneously distributed electric field, thus being more favorable for highly reversible Zn plating/stripping with satisfactory Coulombic efficiency rather than the formation of Zn dendrites or other byproducts. As a consequence, a highly flexible symmetric cell based on the Zn/CNT anode presents appreciably low voltage hysteresis (27 mV) and superior cycling stability (200 h) with dendrite-free morphology at 2 mA cm-2 , accompanied by a high depth of discharge (DOD) of 28%. Such distinct performance overmatches most of recently reported Zn-based anodes. Additionally, this efficient rechargeability of the Zn/CNT anode also enables a substantially stable Zn//MnO2 battery with 88.7% capacity retention after 1000 cycles and remarkable mechanical flexibility.

666 citations


Journal ArticleDOI
15 May 2019-Joule
TL;DR: In this paper, the authors demonstrate that MOF ZIF-8 annealed at 500°C (ZIF8-500) can be used as a host material for high efficiency and dendrite-free Zn plating and stripping because of its porous structure, trace amount of zinc in the framework, and high over-potential for hydrogen evolution.

568 citations


Journal ArticleDOI
TL;DR: In this article, a synergistic method that combines the Cu-Zn solid solution interface on a copper mesh skeleton with good zinc affinity and a polyacrylamide electrolyte additive to modify the zinc anode, which can greatly reduce the overpotential of the zinc nucleation and increase the stability of zinc deposition, is presented.
Abstract: Rechargeable aqueous zinc-ion batteries have been considered as a promising candidate for next-generation batteries. However, the formation of zinc dendrites are the most severe problems limiting their practical applications. To develop stable zinc metal anodes, a synergistic method is presented that combines the Cu-Zn solid solution interface on a copper mesh skeleton with good zinc affinity and a polyacrylamide electrolyte additive to modify the zinc anode, which can greatly reduce the overpotential of the zinc nucleation and increase the stability of zinc deposition. The as-prepared zinc anodes show a dendrite-free plating/stripping behavior over a wide range of current densities. The symmetric cell using this dendrite-free anode can be cycled for more than 280 h with a very low voltage hysteresis (93.1 mV) at a discharge depth of 80 %. The high capacity retention and low polarization are also realized in Zn/MnO2 full cells.

509 citations


Journal ArticleDOI
TL;DR: The spatial isolation of cobalt species on the atomic scale is reported by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo-ZIFs), which led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N-doped porous carbon.
Abstract: The size effect of transition-metal nanoparticles on electrocatalytic performance remains ambiguous especially when decreasing the size to the atomic level. Herein, we report the spatial isolation of cobalt species on the atomic scale, which was achieved by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo-ZIFs), and led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N-doped porous carbon. This synthetic strategy allowed an investigation of the size effect on electrochemical behavior from nanometer to Angstrom dimensions. Single-atom Co catalysts showed superior bifunctional ORR/OER activity, durability, and reversibility in Zn-air batteries compared with the other derivatives and noble-metal Pt/C+RuO2 , which was attributed to the high reactivity and stability of isolated single Co atoms. Our findings open up a new avenue to regulate the metal particle size and catalytic performance of MOF derivatives.

482 citations


Journal ArticleDOI
TL;DR: The observation of a zinc fluoride-rich organic/inorganic hybrid solid electrolyte interphase on zinc anode, based on an acetamide-Zn(TFSI)2 eutectic electrolyte is reported, which exhibits excellent cycling stability with negligible capacity loss at both low and high rates.
Abstract: The surface chemistry of solid electrolyte interphase is one of the critical factors that govern the cycling life of rechargeable batteries. However, this chemistry is less explored for zinc anodes, owing to their relatively high redox potential and limited choices in electrolyte. Here, we report the observation of a zinc fluoride-rich organic/inorganic hybrid solid electrolyte interphase on zinc anode, based on an acetamide-Zn(TFSI)2 eutectic electrolyte. A combination of experimental and modeling investigations reveals that the presence of anion-complexing zinc species with markedly lowered decomposition energies contributes to the in situ formation of an interphase. The as-protected anode enables reversible (~100% Coulombic efficiency) and dendrite-free zinc plating/stripping even at high areal capacities (>2.5 mAh cm‒2), endowed by the fast ion migration coupled with high mechanical strength of the protective interphase. With this interphasial design the assembled zinc batteries exhibit excellent cycling stability with negligible capacity loss at both low and high rates. Zinc chemistry is not favourable to the formation of a solid electrolyte interphase as a result of its high redox potential. In a break with the traditional wisdom, the present authors realise ZnF2-rich hybrid SEI on Zn anode via the modulation of cationic speciation in a eutectic electrolyte.

435 citations


Journal ArticleDOI
TL;DR: In this paper, a competitive complexation strategy has been developed to construct a novel electrocatalyst with Zn-Co atomic pairs coordinated on N doped carbon support (Zn/CoN-C).
Abstract: A competitive complexation strategy has been developed to construct a novel electrocatalyst with Zn-Co atomic pairs coordinated on N doped carbon support (Zn/CoN-C). Such architecture offers enhanced binding ability of O2 , significantly elongates the O-O length (from 1.23 A to 1.42 A), and thus facilitates the cleavage of O-O bond, showing a theoretical overpotential of 0.335 V during ORR process. As a result, the Zn/CoN-C catalyst exhibits outstanding ORR performance in both alkaline and acid conditions with a half-wave potential of 0.861 and 0.796 V respectively. The in situ XANES analysis suggests Co as the active center during the ORR. The assembled zinc-air battery with Zn/CoN-C as cathode catalyst presents a maximum power density of 230 mW cm-2 along with excellent operation durability. The excellent catalytic activity in acid is also verified by H2 /O2 fuel cell tests (peak power density of 705 mW cm-2 ).

414 citations




Journal ArticleDOI
TL;DR: The hierarchically porous structure provides abundant contact with electrolyte, shortens ion diffusion path, and provides cushion for relieving strain generated during electrochemical processes, facilitating both fast kinetics and long-term stability.
Abstract: Rechargeable aqueous zinc-ion batteries are promising candidates for large-scale energy storage but are plagued by the lack of cathode materials with both excellent rate capability and adequate cycle life span. We overcome this barrier by designing a novel hierarchically porous structure of Zn-vanadium oxide material. This Zn0.3V2O5·1.5H2O cathode delivers a high specific capacity of 426 mA·h g-1 at 0.2 A g-1 and exhibits an unprecedented superlong-term cyclic stability with a capacity retention of 96% over 20,000 cycles at 10 A g-1. Its electrochemical mechanism is elucidated. The lattice contraction induced by zinc intercalation and the expansion caused by hydronium intercalation cancel each other and allow the lattice to remain constant during charge/discharge, favoring cyclic stability. The hierarchically porous structure provides abundant contact with electrolyte, shortens ion diffusion path, and provides cushion for relieving strain generated during electrochemical processes, facilitating both fast kinetics and long-term stability.

348 citations


Journal ArticleDOI
TL;DR: In this article, a 3D Zn anode was constructed by electrodepositing Zn on a chemically etched porous copper skeleton, which exhibited reduced polarization, stable cycling performance, and almost 100% Coulombic efficiency as well as fast electrochemical kinetics.
Abstract: Zinc ion batteries (ZIBs) have attracted extensive attention in recent years, benefiting from their high safety, eco-friendliness, low cost, and high energy density. Although many cathode materials for ZIBs have been developed, the poor stability of zinc anodes caused by uneven deposition/stripping of zinc has inevitably limited the practical application of ZIBs. Herein, we report a highly stable 3D Zn anode prepared by electrodepositing Zn on a chemically etched porous copper skeleton. The inherent excellent electrical conductivity and open structure of the 3D porous copper skeleton ensure the uniform deposition/stripping of Zn. The 3D Zn anode exhibits reduced polarization, stable cycling performance, and almost 100% Coulombic efficiency as well as fast electrochemical kinetics during repeated Zn deposition/stripping processes for 350 h. Furthermore, full cells with a 3D Zn anode, ultrathin MnO2 nanosheet cathode, and Zn2+-containing aqueous electrolyte delivered a record-high capacity of 364 mAh g–1 at...

336 citations


Journal ArticleDOI
TL;DR: The correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion.
Abstract: Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N-rich few-layer graphene (N-FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g-C3 N4 ) under zinc catalysis and selected temperature (T = 700, 800, and 900 °C). More significantly, the correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N-FLG-800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N-FLG-800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g-1 at 40 A g-1 ) and excellent long-term stability (211.3 mAh g-1 at 0.5 A g-1 after 2000 cycles), demonstrating the effectiveness of material design.


Journal ArticleDOI
TL;DR: It is found that high-voltage scanning can effectively activate the C-coordinated Fe in FeHCF cathode in ZBs, and thanks to this activation, the Zn-FeHCF hybrid-ion battery achieves a record-breaking cycling performance.
Abstract: Prussian blue analogue (PBA)-type metal hexacyanoferrates are considered as significant cathodes for zinc batteries (ZBs). However, these PBA-type cathodes, such as cyanogroup iron hexacyanoferrate (FeHCF), suffer from ephemeral lifespan (≤1000 cycles), and inferior rate capability (1 A g-1 ). This is because the redox active sites of multivalent iron (Fe(III/II)) can only be very limited activated and thus utilized. This is attributed to the spatial resistance caused by the compact cooperation interaction between Fe and the surrounded cyanogroup, and the inferior conductivity. Here, it is found that high-voltage scanning can effectively activate the C-coordinated Fe in FeHCF cathode in ZBs. Thanks to this activation, the Zn-FeHCF hybrid-ion battery achieves a record-breaking cycling performance of 5000 (82% capacity retention) and 10 000 cycles (73% capacity retention), respectively, together with a superior rate capability of maintaining 53.2% capacity at superhigh current density of 8 A g-1 (≈97 C). The reversible distortion and recovery of the crystalline structure caused by the (de)insertion of zinc and lithium ions is revealed. It is believed that this work represents a substantial advance on PBA electrode materials and may essentially promote application of PBA materials.

Journal ArticleDOI
TL;DR: In this article, a facile chemical method for the preparation of mesoporous MnO2 flower-like nanospheres with the layered framework stabilized by hydrated Zn2+ pillars is presented.
Abstract: Rechargeable zinc-ion batteries based on Zn/MnO2 in neutral aqueous electrolytes are promising for grid-scale energy storage applications owing to their favorable merits of high safety, low cost and environmental benignity. However, MnO2 cathodes are subjected to the challenging issues of poor cyclability and low rate capability. Herein, we report a facile chemical method for the preparation of mesoporous MnO2 flower-like nanospheres with the layered framework stabilized by hydrated Zn2+ pillars. The MnO2 cathode could deliver a reversible specific capacity of 358 mA h g−1 at 0.3 A g−1 after 100 cycles, a high rate capacity of 124 mA h g−1 at 3.0 A g−1, and excellent operating stability over 2000 cycles. Structural and morphological investigations demonstrate an energy storage mechanism of co-insertion/extraction of H+ and Zn2+ accompanied by deposition/dissolution of zinc sulfate hydroxide hydrate flakes on the electrode surface. The superior electrochemical performance makes the zinc ion stabilized MnO2 promising for high capacity and long lifespan zinc-ion batteries.

Journal ArticleDOI
TL;DR: This review offers an up-to-date and comprehensive review of the influence of alloying and fabrication technique on mechanical properties, biodegradability and biocompatibility of Zn.

Journal ArticleDOI
TL;DR: In this article, zinc oxide nanoparticles were synthesized using Lauru seawater, which is a green synthesis of nanoparticles by biological systems especially plant extracts has become an emerging field in nanotechnology.
Abstract: Green synthesis of nanoparticles by biological systems especially plant extracts has become an emerging field in nanotechnology. In this study, zinc oxide nanoparticles were synthesized using Lauru...


Journal ArticleDOI
TL;DR: A layered insoluble inorganic-organic solid was used to prepare dispersions of nanosheets to support active metals such as metallic silver nanoparticles and zinc ions, and the layered matrix showed a great affinity for the metal cations up taking all the added cations.
Abstract: A layered insoluble inorganic-organic solid, namely zirconium phosphate glycine-N,N-bismethylphosphonate, was used to prepare dispersions of nanosheets to support active metals such as metallic silver nanoparticles and zinc ions. Zr phosphate-phosphonate microcrystals were first exfoliated with methylamine to produce a stable colloidal dispersion and then the methylamine was removed by treatment with hydrochloric acid. The obtained colloidal dispersion of Zr phosphate-phosphonate nanosheets was used to immobilize silver or zinc cations, via ion exchange, with the acidic protons of the sheets. The layered matrix showed a great affinity for the metal cations up taking all the added cations. The treatment of the dispersions containing silver ions with ethanol yielded metal silver nanoparticles grafted on the surface of the layered host. The samples were characterized by X-ray powder diffraction, elemental analysis transmission electron microscopy, and selected samples were submitted to antimicrobial tests. The nanocomposites based on Ag nanoparticles showed good bactericidal properties against the bacterial reference strain Staphylococcus epidermidis (S. epidermidis).

Journal ArticleDOI
TL;DR: In this paper, a novel V2O5 nanopaper consisting of V 2O5 nanofibers and carbon nanotubes as reversible Zn-ion cathode was introduced.

Journal ArticleDOI
TL;DR: This novel Zn anode morphology ensures long-term reversible plating/stripping performance over 5000 h, a rate capability of 5 mA cm-2 , and a remarkably high Coulombic efficiency of ≈99.57% without dendrite formation.
Abstract: Dendrite and interfacial reactions have affected zinc (Zn) metal anodes for rechargeable batteries many years. Here, these obstacles are bypassed via adopting an intrinsically safe trimethyl phosphate (TMP)-based electrolyte to build a stable Zn anode. Along with cycling, pristine Zn foil is gradually converted to a graphene-analogous deposit via TMP surfactant and a Zn phosphate molecular template. This novel Zn anode morphology ensures long-term reversible plating/stripping performance over 5000 h, a rate capability of 5 mA cm-2 , and a remarkably high Coulombic efficiency (CE) of ≈99.57% without dendrite formation. As a proof-of-concept, a Zn-VS2 full cell demonstrates an ultralong lifespan, which provides an alternative for electrochemical energy storage devices.

Journal ArticleDOI
TL;DR: In this article, a layered manganese oxide that contains a high content of crystal water (∼10 wt%) as an aqueous zinc battery cathode was reported.
Abstract: Aqueous zinc (Zn)-ion batteries are gaining considerable attention as grid-scale energy storage systems due to their advantages in rate performance, cost, and safety. Here, we report a layered manganese oxide that contains a high content of crystal water (∼10 wt%) as an aqueous zinc battery cathode. The interlayer crystal water can effectively screen the electrostatic interactions between Zn2+ ions and the host framework to facilitate Zn2+ diffusion while sustaining the host framework for prolonged cycles. By virtue of these ‘water’ effects, this material exhibits a high reversible capacity of 350 mA h g−1 at 100 mA g−1, along with decent cycling and rate performance, in a two-electrode cell configuration. Density functional theory (DFT) calculations and extended X-ray absorption fine structure (EXAFS) analyses jointly reveal that upon Zn2+ ion intercalation, a stable inner-sphere Zn-complex coordinated with water molecules is formed, followed by the formation of a Zn–Mn dumbbell structure, which gives a clue for the observed electrochemical performance. This work unveils the useful function of crystal water in enhancing the key electrochemical performance of emerging divalent battery electrodes.

Journal ArticleDOI
TL;DR: High efficiency and durability of green ZnO nanophotocatalyst and an effective photocatalytic activity toward the degradation of Dibenzothiophene contaminant as an organosulfur model in the neutral pH at the mild condition were demonstrated.
Abstract: A novel eco-friendly procedure was developed to produce safer, stable and highly pure zinc oxide nanoparticles (ZnO NPs) using microalgae Chlorella extract. The ZnO NPs were synthesized simply using zinc nitrate and microalgae Chlorella extract which conducted at ambient conditions. In this recipe, microalgae Chlorella extract acted as the reducing agent and a stabilizing layer on fresh ZnO NPs. UV–visible spectrum was confirmed the formation of ZnO NPs showing an absorption peak at 362 nm. XRD results demonstrated that prepared ZnO NPs has a high-crystalline hexagonal (Wurtzite) structure, with average size about 19.44 nm in diameter. FT-IR spectral analysis indicated an active contribution of algae-derived biomolecules in zinc ions bioreduction. According to SEM and TEM observations, ZnO NPs are well dispersed and has a hexagonal shape with the average size of 20 ± 2.2 nm, respectively. Based on gas chromatography analyses, the optimum 0.01 g/L dosage of ZnO catalyst revealed an effective photocatalytic activity toward the degradation (97%) of Dibenzothiophene (DBT) contaminant as an organosulfur model in the neutral pH at the mild condition. Rapid separation and facile recyclability at five consecutive runs were demonstrated high efficiency and durability of green ZnO nanophotocatalyst. The possible mechanisms of green ZnO NPs formation and the photo-desulfurization of DBT were also proposed.


Journal ArticleDOI
TL;DR: Overall, ZnO NPs had a more positive impact on coffee growth and physiology than conventional Zn salts, which was most likely due to their increased ability to be absorbed by the leaf.

Journal ArticleDOI
TL;DR: In this paper, aqueous zinc ion batteries (ZIBs) composed of inexpensive zinc anode and nontoxic electrolyte are attractive candidates for large-scale energy storage applications.
Abstract: The aqueous zinc ion batteries (ZIBs) composed of inexpensive zinc anode and nontoxic aqueous electrolyte are attractive candidates for large-scale energy storage applications. However, their development is limited by cathode materials, which often deliver inferior rate capability and restricted cycle life. Herein, the VO2 nanorods show significant electrochemical performance when used as an intercalation cathode for aqueous ZIBs. Specifically, the VO2 nanorods display high initial capacity of 325.6 mAh g–1 at 0.05 A g–1, good rate capability, and excellent cycling stability of 5000 cycles at 3.0 A g–1. Furthermore, the VO2 unit cell expands in a, b, and c directions sequentially during the discharge process and contracts back reversibly during the charge process, and the zinc storage mechanism is revealed to be a highly reversible single-phase reaction by operando techniques and corresponding qualitative analyses. Our work not only opens a new door to the practical application of VO2 in ZIB systems but a...

Journal ArticleDOI
TL;DR: ZnONPs are promising biocontrol agents that can be used to combat bacterial leaf blight diseases of rice and significantly affected by ZnO nanoparticle.
Abstract: The synthesis of metal oxide nanoparticles with the use of plant extract is a promising alternative to the conventional chemical method. This work aimed to synthesize zinc oxide nanoparticles (ZnON...

Journal ArticleDOI
TL;DR: It was demonstrated that TiO2/ZnO nanoparticles supported in 4A zeolite could lead to an optimum activity as antimicrobial agents.
Abstract: In this study, the antimicrobial activity of titanium dioxide (TiO2), zinc oxide (ZnO), and TiO2/ZnO nanoparticles supported into 4A zeolite (4A z) was assessed. Based on antimicrobial experiments, minimum inhibitory concentration (MIC90), minimum bactericidal concentration (MBC), fractional inhibitory concentration (FIC) and disc diffusion test were determined after 24 h of contact with the prepared nanocomposites. These results are in agreements with the results of disc diffusion test. During the experiments, the numbers of viable bacterial cells of Staphylococcus aureus, Pseudomonas fluorescens, Listeria monocytogenes and Escherichia coli O157:H7 decreased significantly. The crystallinity and morphology of nanoparticles were investigated by X-ray diffraction patterns (XRD), elemental mapping at the microstructural level by scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS), and transmission electron microscopy (TEM). As a result, it was demonstrated that TiO2/ZnO nanoparticles supported in 4A zeolite could lead to an optimum activity as antimicrobial agents.

Journal ArticleDOI
TL;DR: A review of zinc-based degradable biomaterials highlights recent developments, discusses obstacles to overcome, and pinpoints directions for future research.


Journal ArticleDOI
Wenzhuo Wu1, Chun-Yao Niu1, Cong Wei1, Yu Jia1, Chong Li1, Qun Xu1 
TL;DR: Density functional theory calculations reveal that the zinc atoms not only lower the formation energy of S vacancies, but also help to decrease ΔGH of S-vacancy sites near the Zn atoms.
Abstract: Molybdenum disulfide (MoS2 ) has been widely studied as a potential earth-abundant electrocatalyst for the hydrogen-evolution reaction (HER). Defect engineering and heteroelemental doping are effective methods to enhance the catalytic activity in the HER, so exploring an efficient route to simultaneously achieve in-plane vacancy engineering and elemental doping of MoS2 is necessary. In this study, Zinc, a low-cost and moderately active metal, has been used to realize this strategy by generation of sulfur vacancies and zinc doping on MoS2 in one step. Density functional theory calculations reveal that the zinc atoms not only lower the formation energy of S vacancies, but also help to decrease ΔGH of S-vacancy sites near the Zn atoms. At an optimal zinc-reduced MoS2 (Zn@MoS2 ) example, the activated basal planes contribute to the HER activity with an overpotential of -194 mV at 10 mA cm-2 and a low Tafel slope of 78 mV/dec.