scispace - formally typeset
F

F. Kawazoe

Researcher at Leibniz University of Hanover

Publications -  74
Citations -  19454

F. Kawazoe is an academic researcher from Leibniz University of Hanover. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 50, co-authored 74 publications receiving 16944 citations. Previous affiliations of F. Kawazoe include Albert Einstein Institution.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

Tests of general relativity with GW150914

B. P. Abbott, +979 more
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Journal ArticleDOI

Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors

J. Abadie, +709 more
TL;DR: In this article, the authors present an up-to-date summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based LIGO and Virgo Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters.
Journal ArticleDOI

Properties of the Binary Black Hole Merger GW150914

B. P. Abbott, +987 more
TL;DR: The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity.
Journal ArticleDOI

GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

B. P. Abbott, +958 more
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.