scispace - formally typeset
Search or ask a question

Showing papers by "Martin von Bergen published in 2016"


Journal ArticleDOI
01 Feb 2016-Gut
TL;DR: Clear experimental evidence is provided for the causal role of gut bacterial dysbiosis in the development of chronic ileal inflammation with subsequent failure of Paneth cell function.
Abstract: Objectives Dysbiosis of the intestinal microbiota is associated with Crohn9s disease (CD). Functional evidence for a causal role of bacteria in the development of chronic small intestinal inflammation is lacking. Similar to human pathology, TNF deltaARE mice develop a tumour necrosis factor (TNF)-driven CD-like transmural inflammation with predominant ileal involvement. Design Heterozygous TNF deltaARE mice and wildtype (WT) littermates were housed under conventional (CONV), specific pathogen-free (SPF) and germ-free (GF) conditions. Microbial communities were analysed by high-throughput 16S ribosomal RNA gene sequencing. Metaproteomes were measured using LC-MS. Temporal and spatial resolution of disease development was followed after antibiotic treatment and transfer of microbial communities into GF mice. Granulocyte infiltration and Paneth cell function was assessed by immunofluorescence and gene expression analysis. Results GF-TNF deltaARE mice were free of inflammation in the gut and antibiotic treatment of CONV-TNF deltaARE mice attenuated ileitis but not colitis, demonstrating that disease severity and location are microbiota-dependent. SPF-TNF deltaARE mice developed distinct ileitis-phenotypes associated with gradual loss of antimicrobial defence. 16S analysis and metaproteomics revealed specific compositional and functional alterations of bacterial communities in inflamed mice. Transplantation of disease-associated but not healthy microbiota transmitted CD-like ileitis to GF-TNF deltaARE recipients and triggered loss of lysozyme and cryptdin-2 expression. Monoassociation of GF-TNF deltaARE mice with the human CD-related Escherichia coli LF82 did not induce ileitis. Conclusions We provide clear experimental evidence for the causal role of gut bacterial dysbiosis in the development of chronic ileal inflammation with subsequent failure of Paneth cell function.

307 citations


Journal ArticleDOI
TL;DR: Investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobe microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies.
Abstract: Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations fun

279 citations


Journal ArticleDOI
TL;DR: It is concluded that in this soil system, the increased abundance of fungi in both soils and the altered C cycling patterns in the F:B dominated soils highlight the significant role of fungus in litter decomposition and indicate that F: B ratios are linked to higher C storage potential.
Abstract: Despite several lines of observational evidence, there is a lack of consensus on whether higher fungal:bacterial (F:B) ratios directly cause higher soil carbon (C) storage. We employed RNA sequencing, protein profiling and isotope tracer techniques to evaluate whether differing F:B ratios are associated with differences in C storage. A mesocosm 13C labeled foliar litter decomposition experiment was performed in two soils that were similar in their physico-chemical properties but differed in microbial community structure, specifically their F:B ratio (determined by PLFA analyses, RNA sequencing and protein profiling; all three corroborating each other). Following litter addition, we observed a consistent increase in abundance of fungal phyla; and greater increases in the fungal dominated soil; implicating the role of fungi in litter decomposition. Litter derived 13C in respired CO2 was consistently lower, and residual 13C in bulk SOM was higher in high F:B soil demonstrating greater C storage potential in the fungal:bacterial dominated soil. We conclude that in this soil system, the increased abundance of fungi in both soils and the altered C cycling patterns in the fungal:bacterial dominated soils highlight the significant role of fungi in litter decomposition and indicate that F:B ratios are linked to higher C storage potential.

253 citations


Journal ArticleDOI
TL;DR: Changes in blood lipid composition precede the diagnosis of common malignancies by several years and point to a global metabolic shift in phosphatidylcholine metabolism that may drive tumorigenesis.
Abstract: First metabolomics studies have indicated that metabolic fingerprints from accessible tissues might be useful to better understand the etiological links between metabolism and cancer. However, there is still a lack of prospective metabolomics studies on pre-diagnostic metabolic alterations and cancer risk. Associations between pre-diagnostic levels of 120 circulating metabolites (acylcarnitines, amino acids, biogenic amines, phosphatidylcholines, sphingolipids, and hexoses) and the risks of breast, prostate, and colorectal cancer were evaluated by Cox regression analyses using data of a prospective case-cohort study including 835 incident cancer cases. The median follow-up duration was 8.3 years among non-cases and 6.5 years among incident cases of cancer. Higher levels of lysophosphatidylcholines (lysoPCs), and especially lysoPC a C18:0, were consistently related to lower risks of breast, prostate, and colorectal cancer, independent of background factors. In contrast, higher levels of phosphatidylcholine PC ae C30:0 were associated with increased cancer risk. There was no heterogeneity in the observed associations by lag time between blood draw and cancer diagnosis. Changes in blood lipid composition precede the diagnosis of common malignancies by several years. Considering the consistency of the present results across three cancer types the observed alterations point to a global metabolic shift in phosphatidylcholine metabolism that may drive tumorigenesis.

158 citations


Journal ArticleDOI
TL;DR: Chemical cross-linking confirmed the presence of a higher molecular mass reductive dehalogenase protein complex composed of RdhA, CISM I and Hup hydrogenase and proved to be a potential tool for stabilising protein-protein interactions of the dehalgenating complex prior to membrane solubilisation.
Abstract: Summary Dehalococcoides mccartyi strain CBDB1 is an obligate organohalide-respiring bacterium using only hydrogen as electron donor and halogenated organics as electron acceptor. Here, we studied proteins involved in the respiratory chain under non-denaturing conditions. Using blue native gel electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250–270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster containing subunit (CbdbA131) of the hydrogen uptake hydrogenase (Hup). No colocalisation between the catalytically active subunits of hydrogenase and reductive dehalogenase was found. By two-dimensional BN/SDS-PAGE the stability of the complex towards detergents was assessed, demonstrating stepwise disintegration with increasing detergent concentrations. Chemical cross-linking confirmed the presence of a higher molecular mass reductive dehalogenase protein complex composed of RdhA, CISM I and Hup hydrogenase and proved to be a potential tool for stabilising protein–protein interactions of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi.

86 citations


Journal ArticleDOI
TL;DR: The demonstrated RSF approach provides comparable findings as the generally used Cox regression, but also addresses the problem of multicollinearity and is suitable for high-dimensional data.
Abstract: Background The application of metabolomics in prospective cohort studies is statistically challenging. Given the importance of appropriate statistical methods for selection of disease-associated metabolites in highly correlated complex data, we combined random survival forest (RSF) with an automated backward elimination procedure that addresses such issues. Methods Our RSF approach was illustrated with data from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study, with concentrations of 127 serum metabolites as exposure variables and time to development of type 2 diabetes mellitus (T2D) as outcome variable. Out of this data set, Cox regression with a stepwise selection method was recently published. Replication of methodical comparison (RSF and Cox regression) was conducted in two independent cohorts. Finally, the R-code for implementing the metabolite selection procedure into the RSF-syntax is provided. Results The application of the RSF approach in EPIC-Potsdam resulted in the identification of 16 incident T2D-associated metabolites which slightly improved prediction of T2D when used in addition to traditional T2D risk factors and also when used together with classical biomarkers. The identified metabolites partly agreed with previous findings using Cox regression, though RSF selected a higher number of highly correlated metabolites. Conclusions The RSF method appeared to be a promising approach for identification of disease-associated variables in complex data with time to event as outcome. The demonstrated RSF approach provides comparable findings as the generally used Cox regression, but also addresses the problem of multicollinearity and is suitable for high-dimensional data.

75 citations


Journal ArticleDOI
TL;DR: This study investigated microbial toluene removal in a constructed wetland model system combining 16S rRNA gene sequencing, metaproteomics and C-toluene in situ protein-based stable isotope probing (protein-SIP) and observed that the main pathway of toLUene degradation occurred via two subsequent monooxygenations of the aromatic ring.
Abstract: In constructed wetlands, organic pollutants are mainly degraded via microbial processes. Helophytes, plants that are commonly used in these systems, provide oxygen and root exudates to the rhizosphere, stimulating microbial degradation. While the treatment performance of constructed wetlands can be remarkable, a mechanistic understanding of microbial degradation processes in the rhizosphere is still limited. We investigated microbial toluene removal in a constructed wetland model system combining 16S rRNA gene sequencing, metaproteomics and (13) C-toluene in situ protein-based stable isotope probing (protein-SIP). The rhizospheric bacterial community was dominated by Burkholderiales and Rhizobiales, each contributing about 20% to total taxon abundance. Protein-SIP data revealed that the members of Burkholderiaceae, the proteins of which showed about 73% of (13) C-incorporation, were the main degraders of toluene in the planted system, while the members of Comamonadaceae were involved to a lesser extent in degradation (about 64% (13) C-incorporation). Among the Burkholderiaceae, one of the key players of toluene degradation could be assigned to Ralstonia pickettii. We observed that the main pathway of toluene degradation occurred via two subsequent monooxygenations of the aromatic ring. Our study provides a suitable approach to assess the key processes and microbes that are involved in the degradation of organic pollutants in complex rhizospheric ecosystems.

65 citations


Journal ArticleDOI
TL;DR: Both mothers and children showed genome-wide alterations in DNA-methylation specifically in enhancer elements, and high maternal stress was associated with an increased risk for persistent wheezing in the child until the age of 5.
Abstract: Psychological stress during pregnancy increases the risk of childhood wheeze and asthma. However, the transmitting mechanisms remain largely unknown. Since epigenetic alterations have emerged as a link between perturbations in the prenatal environment and an increased disease risk we used whole genome bisulfite sequencing (WGBS) to analyze changes in DNA methylation in mothers and their children related to prenatal psychosocial stress and assessed its role in the development of wheeze in the child. We evaluated genomic regions altered in their methylation level due to maternal stress based of WGBS data of 10 mother-child-pairs. These data were complemented by longitudinal targeted methylation and transcriptional analyses in children from our prospective mother-child cohort LINA for whom maternal stress and wheezing information was available (n = 443). High maternal stress was associated with an increased risk for persistent wheezing in the child until the age of 5. Both mothers and children showed genome-wide alterations in DNA-methylation specifically in enhancer elements. Deregulated neuroendocrine and neurotransmitter receptor interactions were observed in stressed mothers and their children. In children but not in mothers, calcium- and Wnt-signaling required for lung maturation in the prenatal period were epigenetically deregulated and could be linked with wheezing later in children’s life.

64 citations


Journal ArticleDOI
TL;DR: It was showed that, in contrast to the dominance of fungi in the degradation of complex carbon compounds, mostly bacteria were involved in the short-term assimilation of plant-derived N.
Abstract: In comparison to inorganic N cycling, only little is known regarding the assimilation of organic N in soil. Therefore, we used 16S and 18S rDNA gene profiling and functional metaproteomics to characterize the composition of a soil microbial community assimilating (15)N-labeled plant-derived organic matter (OM). Genomic results showed an increase of the abundance of fungi and Proteobacteria related to the utilization of plant-derived OM within the first days of exposure. Similarly, metaproteomic analysis revealed Proteobacteria as the most abundant phylum followed by Actinobacteria and Ascomycota . Finally, protein stable isotope probing (protein-SIP) demonstrated copiotrophic behavior for Rhizobiales belonging to Proteobacteria , Actinomycetales belonging to Actinobacteria and Chroococcales belonging to Cyanobacteria as these phylotypes immediately incorporated (15)N from the added plant tissue. Conversely, the fungal Saccharomycetales and the bacterial Enterobacteriales , Pseudomonadales , Sphingomonadales and Xanthomonadales displayed slower (15)N-assimilation. We showed that, in contrast to the dominance of fungi in the degradation of complex carbon compounds, mostly bacteria were involved in the short-term assimilation of plant-derived N. The combined use of genomic and proteomic approaches allowed to track the flow of N within the soil microbial community.

62 citations


Journal ArticleDOI
TL;DR: Model systems are useful to evaluate the challenges encountered within metaproteomics, including species complexity and coverage, biomass availability, or reliable protein extraction, and can be considered as a step forward to better understand microbial community responses and ecological functions of single member organisms.
Abstract: Metaproteomics--the large-scale characterization of the entire protein complement of environmental microbiota at a given point in time--has provided new features to study complex microbial communities in order to unravel these "black boxes." New technical challenges arose that were not an issue for classical proteome analytics before that could be tackled by the application of different model systems. Here, we review different current and future model systems for metaproteome analysis. Following a short introduction to microbial communities and metaproteomics, we introduce model systems for clinical and biotechnological research questions including acid mine drainage, anaerobic digesters, and activated sludge. Model systems are useful to evaluate the challenges encountered within (but not limited to) metaproteomics, including species complexity and coverage, biomass availability, or reliable protein extraction. The implementation of model systems can be considered as a step forward to better understand microbial community responses and ecological functions of single member organisms. In the future, improvements are necessary to fully explore complex environmental systems by metaproteomics.

59 citations


Journal ArticleDOI
TL;DR: The current state of protein-based stable isotope probing (protein-SIP) and the perspectives of using differentstable isotope atoms are discussed and applications in complex model systems and in situ studies in the environment are discussed.

Journal ArticleDOI
TL;DR: Analyzing longitudinal changes of the blood metabolome and identifying new biomarkers by this approach can help understanding the multifaceted metabolic adaptation of transition dairy cows.
Abstract: Dairy cows experience metabolic stress during the transition from late pregnancy to early lactation, due to the complex adaptation processes affecting energy homeostasis in support of milk production, collectively referred to as homeorhesis. According to the individual efficiency of this adaptation, some cows develop severe metabolic diseases while others are able to maintain metabolic health. This study aimed to characterize patterns and changes of metabolic phenotype during the transition period, and to identify how far different metabolic pathways are affected by or contributing to the complex system of homeorhesis. Blood samples were collected from 26 German Holstein cows, repeatedly during the transition period: 42 and 10 days before calving and 3, 21 and 100 days after calving. Blood serum samples were subjected to a liquid chromatography–mass spectrometry based targeted metabolomics analysis using the AbsoluteIDQ p180 Kit of Biocrates Life Science AG (Innsbruck, Austria). Processed metabolomics data were evaluated by multivariate data analysis techniques such as principal component analysis (PCA) and partial least squares-discriminant analysis and by heatmap visualization. The PCA revealed a clear separation according to sampling days, indicating a notable shift of the metabolic phenotype during the transition period. The heatmap showed that acylcarnitines provided a consistent clustering within sampling days, while the concentration of glycerophospholipids and sphingolipids were remarkably decreased 10 days before and 3 days after calving than earlier and later in the transition period. Analyzing longitudinal changes of the blood metabolome and identifying new biomarkers by this approach can help understanding the multifaceted metabolic adaptation of transition dairy cows.

Journal ArticleDOI
TL;DR: This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms.

Journal ArticleDOI
TL;DR: It is proposed that energy for the costly protein synthesis is reduced by three mechanisms as follows: dehydration, which increases protein concentration without de novo synthesis; reduced protein degradation rates due to a 6 °C reduction in body temperature and decreased protease activity; and a marked redistribution of energy resources only increasing de noovo synthesis of a few key proteins.

Journal ArticleDOI
TL;DR: MSCs ameliorated hepatic dysfunction and improved liver regeneration after extended resection by paracrine mechanisms and may represent a new therapeutic option to treat posthepatectomy acute liver failure.
Abstract: Objective To prevent posthepatectomy acute liver failure after extended resection by treatment with mesenchymal stem cells (MSCs). Background Liver tumors often require extended liver resection, overburdening metabolic and regenerative capacities of the remnant organ. Resulting dysfunction and failure may be improved by the proregenerative characteristics of MSCs. Methods Extended liver resection was performed in (DPPIV)-deficient F344-Fischer rats. Wild-type animals served as donors of peritoneal adipose-derived MSCs. These were predifferentiated in vitro into hepatocytic cells and delivered to the liver by splenic application. Liver-related blood parameters (international normalized ratio, bilirubin, aspartate aminotransferase, alanine aminotransferase) and liver histology (hematoxylin-eosin, Sudan III) were determined to monitor liver function. Metabolic changes were assessed by metabolomic analyses in the remnant liver and the serum. Liver damage and regeneration were quantified by determination of the apoptotic and proliferation rates. Results MSCs supported survival after partial hepatectomy. They decreased liver-related blood parameters indicative for the improvement of liver function. The extensive lipid accumulation in hepatocytes illustrating the metabolic overload after resection was attenuated. Treatment with MSCs normalized imbalance of amino acids, acylcarnitines, sphingolipids, and glycerophospholipids in the liver and blood. Furthermore, MSCs decreased the apoptotic rate and increased the proliferation rate. The experimental time period (48 hours) was too short to allow for integration of MSCs into the host liver. Thus, the mode of action was probably indirect. Conclusions MSCs ameliorated hepatic dysfunction and improved liver regeneration after extended resection by paracrine mechanisms. They may represent a new therapeutic option to treat posthepatectomy acute liver failure.

Journal ArticleDOI
TL;DR: A. fumigatus demonstrated exceptional performance and could bring down the concentrations of Cd, Cu, Ni, Pb and Zn below the threshold level for irrigation prescribed by Food and Agriculture Organization (FAO).

Journal ArticleDOI
TL;DR: It is indicated that therapeutically relevant drugs like the anthelmintic MNP represent substrates of the bovine mammary ABCG2 transporter and may thereby be actively concentrated in dairy milk.
Abstract: In human and mice ATP-binding cassette efflux transporter ABCG2 represents the main route for active drug transport into milk. However, there is no detailed information on the role of ABCG2 in drug secretion and accumulation in milk of dairy animals. We therefore examined ABCG2-mediated drug transport in the bovine mammary gland by parallel pharmacokinetic studies in lactating Jersey cows and in vitro flux studies using the anthelmintic drug monepantel (MNP) as representative bovine ABCG2 (bABCG2) drug substrate. Animals received MNP (Zolvix, Novartis Animal Health Inc.) once (2.5 mg/kg per os) and the concentrations of MNP and the active MNP metabolite MNPSO2 were assessed by high-performance liquid chromatography. Compared with the parent drug MNP, we detected higher MNPSO2 plasma concentrations (expressed as area under the concentration-versus-time curve). Moreover, we observed MNPSO2 excretion into milk of dairy cows with a high milk-to-plasma ratio of 6.75. In mechanistic flux assays, we determined a preferential time-dependent basolateral-to-apical (B > A) MNPSO2 transport across polarized Madin-Darby canine kidney II cells-bABCG2 monolayers using liquid chromatography coupled with tandem mass spectrometry analysis. The B > A MNPSO2 transport was significantly inhibited by the ABCG2 inhibitor fumitremorgin C in bABCG2- but not in mock-transduced MDCKII cells. Additionally, the antibiotic drug enrofloxacin, the benzimidazole anthelmintic oxfendazole and the macrocyclic lactone anthelmintic moxidectin caused a reduction in the MNPSO2(B > A) net efflux. Altogether, this study indicated that therapeutically relevant drugs like the anthelmintic MNP represent substrates of the bovine mammary ABCG2 transporter and may thereby be actively concentrated in dairy milk.


Journal ArticleDOI
TL;DR: This work reviews the use of bioreactor systems for ex vivo modelling of the human gut microbiota with respect to analysis of the metabolic output of the microbial ecosystem, and discusses the possibility of mechanistic insights using these combined techniques.

Journal ArticleDOI
TL;DR: The identified genes may allow for monitoring of potential gemfibrozil-degrading organisms in situ and increase the understanding of microbial processing of trace level contaminants.
Abstract: Gemfibrozil is a widely used hypolipidemic and triglyceride lowering drug. Excess of the drug is excreted and discharged into the environment primarily via wastewater treatment plant effluents. Bacillus sp. GeD10, a gemfibrozil-degrader, was previously isolated from activated sludge. It is the first identified bacterium capable of degrading gemfibrozil. Gemfibrozil degradation by Bacillus sp. GeD10 was here studied through genome sequencing, quantitative proteomics and metabolite analysis. From the bacterial proteome of Bacillus sp. GeD10 1974 proteins were quantified, of which 284 proteins were found to be overabundant by more than 2-fold (FDR corrected p-value ≤0.032, fold change (log2) ≥ 1) in response to gemfibrozil exposure. Metabolomic analysis identified two hydroxylated intermediates as well as a glucuronidated hydroxyl-metabolite of gemfibrozil. Overall, gemfibrozil exposure in Bacillus sp. GeD10 increased the abundance of several enzymes potentially involved in gemfibrozil degradation as well as resulted in the production of several gemfibrozil metabolites. The potential catabolic pathway/modification included ring-hydroxylation preparing the substrate for subsequent ring cleavage by a meta-cleaving enzyme. The identified genes may allow for monitoring of potential gemfibrozil-degrading organisms in situ and increase the understanding of microbial processing of trace level contaminants. This study represents the first omics study on a gemfibrozil-degrading bacterium.

Journal ArticleDOI
07 Sep 2016-Mbio
TL;DR: An unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution is proposed in the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoy l-coA.
Abstract: Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA. IMPORTANCE Organofluorides are produced as pesticides, pharmaceuticals, and other chemicals and comprise approximately one quarter of all organic compounds in the pharmaceutical and agricultural sectors; they are considered a growing class of environmentally relevant persistent pollutants. Especially in the case of fluoroaromatics, biodegradation is hampered by the extreme stability of the arylic C–F bond. In aerobic microorganisms, degradation proceeds via oxygenase-dependent C–F bond cleavage reactions, whereas the enzymes involved in the degradation of fluoroaromatics at anoxic sites are unknown. Here we report a strategy for the complete biodegradation of a fluoroaromatic to CO2 and HF in a denitrifying bacterium via activation to a CoA ester, followed by oxygen-independent arylic C–F bond cleavage catalyzed by an ATP-dependent enzyme. This reaction, in conjunction with a transcriptional adaptation to fluorinated growth substrates, is essential for the anoxic biodegradation of 4-fluorobenzoate/4-F-toluene and probably other fluoroaromatics.

Journal ArticleDOI
TL;DR: This work optimized a protocol for the simultaneous extraction of DNA, RNA, proteins, and metabolites and compared it with two existing protocols and found only the newly developed protocol yielded all biomolecule classes of adequate quantity and quality.

Journal ArticleDOI
TL;DR: The results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night.
Abstract: Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase ( bssA ) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. IMPORTANCE Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis in these bacteria was higher during the day, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night. Our study illuminates microbial processes occurring in the rhizosphere of an aquatic ecosystem.

Journal ArticleDOI
TL;DR: How stable isotope probing techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation are presented.
Abstract: Stable isotope probing (SIP) techniques have become state-of-the-art in microbial ecology over the last 10 years, allowing for the targeted detection and identification of organisms, metabolic pathways and elemental fluxes active in specific processes within complex microbial communities. For studying anaerobic hydrocarbon-degrading microbial communities, four stable isotope techniques have been used so far: DNA/RNA-SIP, PLFA (phospholipid-derived fatty acids)-SIP, protein-SIP, and single-cell-SIP by nanoSIMS (nanoscale secondary ion mass spectrometry) or confocal Raman microscopy. DNA/RNA-SIP techniques are most frequently applied due to their most meaningful phylogenetic resolution. Especially using 13C-labeled benzene and toluene as model substrates, many new hydrocarbon degraders have been identified by SIP under various electron acceptor conditions. This has extended the current perspective of the true diversity of anaerobic hydrocarbon degraders relevant in the environment. Syntrophic hydrocarbon degradation was found to be a common mechanism for various electron acceptors. Fundamental concepts and recent advances in SIP are reflected here. A discussion is presented concerning how these techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation.

Journal ArticleDOI
TL;DR: It is demonstrated that this member of the Campylobacterales is the dominant acetate utilizer in the benzene-degrading microbial consortium.
Abstract: In a benzene-degrading and sulfate-reducing syntrophic consortium, a clostridium affiliated to the genus Pelotomaculum was previously described to ferment benzene while various sulfate-reducing Deltaproteobacteria and a member of the Epsilonproteobacteria were supposed to utilize acetate and hydrogen as key metabolites derived from benzene fermentation. However, the acetate utilization network within this community was not yet unveiled. In this study, we performed a pulsed 13C2-acetate protein stable isotope probing (protein-SIP) approach continuously spiking low amounts of acetate (10 μM per day) in addition to the ongoing mineralization of unlabeled benzene. Metaproteomics revealed high abundances of Clostridiales followed by Syntrophobacterales, Desulfobacterales, Desulfuromonadales, Desulfovibrionales, Archaeoglobales, and Campylobacterales. Pulsed acetate protein-SIP results indicated that members of the Campylobacterales, the Syntrophobacterales, the Archaeoglobales, the Clostridiales, and the Desulfobacterales were linked to acetate utilization in descending abundance. The Campylobacterales revealed the fastest and highest 13C incorporation. Previous experiments suggested that the activity of the Campylobacterales was not essential for anaerobic benzene degradation in the investigated community. However, these organisms were consistently detected in various hydrocarbon-degrading and sulfate-reducing consortia enriched from the same aquifer. Here, we demonstrate that this member of the Campylobacterales is the dominant acetate utilizer in the benzene-degrading microbial consortium.

Journal ArticleDOI
TL;DR: A proteomics study revealed possible biomarkers for dendritic cell (DC) activation by contact allergens and elucidate the role of Keap1/Nrf2 signaling in this process, and distinguished between Nrf2-dependent and NRF2-independent cellular biomarkers differentially regulated upon allergen-induced DC activation.

Journal ArticleDOI
TL;DR: Ridifying this contact permanently with a disulfide bridge disrupts ligand-induced receptor activation and indicates that rearrangement of the ECD/extracellular loop 1 (ECL1) interface is a critical step in receptor activation.

Journal ArticleDOI
21 Jul 2016-PLOS ONE
TL;DR: An approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids is described, identifying potential biomarkers to indicate imbalanced healing progress on all levels of analysis.
Abstract: Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis.

Journal ArticleDOI
TL;DR: The results suggest that in vitro metabolomics can serve as tool to develop bioassays for application in hazard assessment, and up-regulation of sphingomyelin levels after exposure to BAP and DALP point to pro-apoptotic processes caused by these two potent PAHs.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the human environment. Since they are present in crude oilfractions used for the production of rubber and plastics, consumers may come into direct dermal contacts with these compounds (e.g., via tool handles) on a daily basis. Some individual PAHs are identified as genotoxic mutagens thereby prompting particular toxicological and environmental concern. Among this group, benzo[a]pyrene (BAP) constitutes a model carcinogen which is also used as reference compound for risk assessment purposes. It acts as a strong agonist of the aryl hydrocarbon receptor (AHR) and becomes metabolically activated toward mutagenic and carcinogenic intermediates by cytochrome P450-dependent monooxygenases (CYPs). While BAP has been exhaustively characterized with regard to its toxicological properties, there is much less information available for other PAHs. We treated an AHR-proficient immortal human keratinocyte cell line (i.e., HaCaT) with three selected PAHs: BAP, chrysene (CRY) and dibenzo[a,l]pyrene (DALP). Compound-mediated alterations of endogenous metabolites were investigated by an LC–MS/MS-based targeted approach. To examine AHR-dependent changes of the measured metabolites, AHR-deficient HaCaT knockdown cells (AHR-KD) were used for comparison. Our results reveal that 24 metabolites are sufficient to separate the PAH-exposed cells from untreated controls by application of a multivariate model. Alterations in the metabolomics profiles caused by each PAH show influences on the energy and lipid metabolism of the cells indicating reduced tricarboxylic acid (TCA) cycle activity and β-oxidation. Up-regulation of sphingomyelin levels after exposure to BAP and DALP point to pro-apoptotic processes caused by these two potent PAHs. Our results suggest that in vitro metabolomics can serve as tool to develop bioassays for application in hazard assessment.

Journal ArticleDOI
TL;DR: This facile and robust method developed for 25OHVD3 synthesis is a novel example for the concept of substrate-engineered catalysis and offers an attractive alternative to chemical or O2 /electron-donor-dependent enzymatic procedures.
Abstract: The hydroxylation of vitamin D3 (VD3, cholecalciferol) side chains to give 25-hydroxyvitamin D3 (25OHVD3) is a crucial reaction in the formation of the circulating and biologically active forms of VD3. It is usually catalyzed by cytochrome P450 monooxygenases that depend on complex electron donor systems. Cell-free extracts and a purified Mo enzyme from a bacterium anaerobically grown with cholesterol were employed for the regioselective, ferricyanide-dependent hydroxylation of VD3 and proVD3 (7-dehydrocholesterol) into the corresponding tertiary alcohols with greater than 99 % yield. Hydroxylation of VD3 strictly depends on a cyclodextrin-assisted isomerization of VD3 into preVD3, the actual enzymatic substrate. This facile and robust method developed for 25OHVD3 synthesis is a novel example for the concept of substrate-engineered catalysis and offers an attractive alternative to chemical or O2 /electron-donor-dependent enzymatic procedures.