scispace - formally typeset
U

Uwe Weierstall

Researcher at Arizona State University

Publications -  161
Citations -  16208

Uwe Weierstall is an academic researcher from Arizona State University. The author has contributed to research in topics: Diffraction & Femtosecond. The author has an hindex of 55, co-authored 158 publications receiving 14456 citations. Previous affiliations of Uwe Weierstall include Lawrence Berkeley National Laboratory & Lawrence Livermore National Laboratory.

Papers
More filters
Journal ArticleDOI

Femtosecond X-ray protein nanocrystallography

Henry N. Chapman, +88 more
- 03 Feb 2011 - 
TL;DR: This work offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage, by using pulses briefer than the timescale of most damage processes.
Journal ArticleDOI

Single mimivirus particles intercepted and imaged with an X-ray laser

M. Marvin Seibert, +88 more
- 03 Feb 2011 - 
TL;DR: This work shows that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source.
Journal ArticleDOI

X-ray image reconstruction from a diffraction pattern alone

TL;DR: In this article, an inversion method was used to reconstruct the image of the object without the need for any such prior knowledge, without the knowledge of the shape of the objects and the low spatial frequencies unavoidably lost in experiments.
Journal ArticleDOI

High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

TL;DR: Serial femtosecond crystallography (SFX) is applied using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals of the well-characterized model protein lysozyme, demonstrating the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.
Journal ArticleDOI

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

Yanyong Kang, +71 more
- 30 Jul 2015 - 
TL;DR: The crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin is determined by serial femtosecond X-ray laser crystallography and provides a basis for understanding GPCR-mediated arrestin-biased signalling.