scispace - formally typeset
Search or ask a question

Showing papers by "Yu Huang published in 2020"


Journal ArticleDOI
B. P. Abbott1, R. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (145)
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Abstract: On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

1,189 citations


Journal ArticleDOI
R. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1332 moreInstitutions (150)
TL;DR: It is inferred that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙, which can be considered an intermediate mass black hole (IMBH).
Abstract: On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21} M_{⊙} and 66_{-18}^{+17} M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28} M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4} Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30} Gpc^{-3} yr^{-1}.

876 citations


Journal ArticleDOI
TL;DR: Patients with cancer and COVID-19 who were admitted to hospital had a high case-fatality rate and unfavourable prognostic factors, including receiving chemotherapy within 4 weeks before symptom onset and male sex, might help clinicians to identify patients at high risk of fatal outcomes.
Abstract: Summary Background Patients with cancer are a high-risk population in the COVID-19 pandemic. We aimed to describe clinical characteristics and outcomes of patients with cancer and COVID-19, and examined risk factors for mortality in this population. Methods We did a retrospective, multicentre, cohort study of 205 patients with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and with a pathological diagnosis of a malignant tumour in nine hospitals within Hubei, China, from Jan 13 to March 18, 2020. All patients were either discharged from hospitals or had died by April 20, 2020. Clinical characteristics, laboratory data, and cancer histories were compared between survivors and non-survivors by use of χ2 test. Risk factors for mortality were identified by univariable and multivariable logistic regression models. Findings Between Jan 13 and Mar 18, 2020, 205 patients with cancer and laboratory-confirmed SARS-CoV-2 infection were enrolled (median age 63 years [IQR 56–70; range 14–96]; 109 [53%] women). 183 (89%) had solid tumours and 22 (11%) had haematological malignancies. The median duration of follow-up was 68 days (IQR 59–78). The most common solid tumour types were breast (40 [20%] patients), colorectal (28 [14%]), and lung cancer (24 [12%]). 54 (30%) of 182 patients received antitumour therapies within 4 weeks before symptom onset. 30 (15%) of 205 patients were transferred to an intensive care unit and 40 (20%) died during hospital admission. Patients with haematological malignancies had poorer prognoses than did those with solid tumours: nine (41%) of 22 patients with haematological malignancies died versus 31 (17%) of 183 patients with solid tumours (hazard ratio for death 3·28 [95% CI 1·56–6·91]; log rank p=0·0009). Multivariable regression analysis showed that receiving chemotherapy within 4 weeks before symptom onset (odds ratio [OR] 3·51 [95% CI 1·16–10·59]; p=0·026) and male sex (OR 3·86 [95% CI 1·57–9·50]; p=0·0033) were risk factors for death during admission to hospital. Interpretation Patients with cancer and COVID-19 who were admitted to hospital had a high case-fatality rate. Unfavourable prognostic factors, including receiving chemotherapy within 4 weeks before symptom onset and male sex, might help clinicians to identify patients at high risk of fatal outcomes. Funding National Natural Science Foundation of China.

386 citations


Journal ArticleDOI
31 Aug 2020
TL;DR: In this article, the fundamental kinetics of the electrocatalytic sulfur reduction reaction (SRR), a complex 16-electron conversion process in lithium-sulfur batteries, is investigated.
Abstract: The fundamental kinetics of the electrocatalytic sulfur reduction reaction (SRR), a complex 16-electron conversion process in lithium–sulfur batteries, is so far insufficiently explored. Here, by directly profiling the activation energies in the multistep SRR, we reveal that the initial reduction of sulfur to the soluble polysulfides is relatively easy owing to the low activation energy, whereas the subsequent conversion of the polysulfides into the insoluble Li2S2/Li2S has a much higher activation energy, contributing to the accumulation of polysulfides and exacerbating the polysulfide shuttling effect. We use heteroatom-doped graphene as a model system to explore electrocatalytic SRR. We show that nitrogen and sulfur dual-doped graphene considerably reduces the activation energy to improve SRR kinetics. Density functional calculations confirm that the doping tunes the p-band centre of the active carbons for an optimal adsorption strength of intermediates and electroactivity. This study establishes electrocatalysis as a promising pathway to tackle the fundamental challenges facing lithium–sulfur batteries. The fundamental kinetics of the electrocatalytic sulfur reduction reaction, a complex 16-electron conversion process in lithium–sulfur batteries, is a topic that remains largely unexplored. Here, by directly profiling the activation energies in the multi-step reaction, the authors establish how the conversion kinetics differ for each step.

377 citations


Journal ArticleDOI
TL;DR: A general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning.
Abstract: Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 $${{{\rm{A}}\,{\rm{mg}}^{-1}_{{\rm{Ir}}}}}$$ whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10−3 $${{{\rm{A}}\,{\rm{mg}}^{-1}_{{\rm{Ir}}}}}$$). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning.

367 citations


Journal ArticleDOI
19 Mar 2020-Nature
TL;DR: A general strategy for the synthesis of two-dimensional van der Waals heterostructure arrays is used to produce high-performance electronic devices, showing the potential of this scalable approach for practical technologies.
Abstract: Two-dimensional van der Waals heterostructures (vdWHs) have attracted considerable interest1–4. However, most vdWHs reported so far are created by an arduous micromechanical exfoliation and manual restacking process5, which—although versatile for proof-of-concept demonstrations6–16 and fundamental studies17–30—is clearly not scalable for practical technologies. Here we report a general synthetic strategy for two-dimensional vdWH arrays between metallic transition-metal dichalcogenides (m-TMDs) and semiconducting TMDs (s-TMDs). By selectively patterning nucleation sites on monolayer or bilayer s-TMDs, we precisely control the nucleation and growth of diverse m-TMDs with designable periodic arrangements and tunable lateral dimensions at the predesignated spatial locations, producing a series of vdWH arrays, including VSe2/WSe2, NiTe2/WSe2, CoTe2/WSe2, NbTe2/WSe2, VS2/WSe2, VSe2/MoS2 and VSe2/WS2. Systematic scanning transmission electron microscopy studies reveal nearly ideal vdW interfaces with widely tunable moire superlattices. With the atomically clean vdW interface, we further show that the m-TMDs function as highly reliable synthetic vdW contacts for the underlying WSe2 with excellent device performance and yield, delivering a high ON-current density of up to 900 microamperes per micrometre in bilayer WSe2 transistors. This general synthesis of diverse two-dimensional vdWH arrays provides a versatile material platform for exploring exotic physics and promises a scalable pathway to high-performance devices. A general strategy for the synthesis of two-dimensional van der Waals heterostructure arrays is used to produce high-performance electronic devices, showing the potential of this scalable approach for practical technologies.

319 citations



Journal ArticleDOI
01 Oct 2020
TL;DR: In this article, the authors report that copper nanowires with rich surface steps exhibit a remarkably high Faradaic efficiency for C2H4 that can be maintained for over 200 hours.
Abstract: Electrochemical CO2 reduction to value-added chemical feedstocks is of considerable interest for renewable energy storage and renewable source generation while mitigating CO2 emissions from human activity. Copper represents an effective catalyst in reducing CO2 to hydrocarbons or oxygenates, but it is often plagued by a low product selectivity and limited long-term stability. Here we report that copper nanowires with rich surface steps exhibit a remarkably high Faradaic efficiency for C2H4 that can be maintained for over 200 hours. Computational studies reveal that these steps are thermodynamically favoured compared with Cu(100) surface under the operating conditions and the stepped surface favours C2 products by suppressing the C1 pathway and hydrogen production. The electrochemical reduction of CO2 to value-added fuels and feedstocks has recently received a great deal of attention. Here, Cu nanowires that display rich surface steps are reported to sustain C2H4 production from CO2 with a remarkably high Faradaic efficiency for 200 hours.

234 citations


Journal ArticleDOI
TL;DR: This work unravels the evolution pathway of precursors to ORR-active catalyst comprised exclusively of single atom Fe1(II)-N4 sites via in-temperature X-ray absorption spectroscopy and verifies the vapor phase single Fe atom transport mechanism via "non-contact pyrolysis".
Abstract: Pyrolysis is indispensable for synthesizing highly active Fe-N-C catalysts for the oxygen reduction reaction (ORR) in acid, but how Fe, N, and C precursors transform to ORR-active sites during pyrolysis remains unclear. This knowledge gap obscures the connections between the input precursors and the output products, clouding the pathway toward Fe-N-C catalyst improvement. Herein, we unravel the evolution pathway of precursors to ORR-active catalyst comprised exclusively of single-atom Fe1(II)-N4 sites via in-temperature X-ray absorption spectroscopy. The Fe precursor transforms to Fe oxides below 300 °C and then to tetrahedral Fe1(II)-O4 via a crystal-to-melt-like transformation below 600 °C. The Fe1(II)-O4 releases a single Fe atom that diffuses into the N-doped carbon defect forming Fe1(II)-N4 above 600 °C. This vapor-phase single Fe atom transport mechanism is verified by synthesizing Fe1(II)-N4 sites via "noncontact pyrolysis" wherein the Fe precursor is not in physical contact with the N and C precursors during pyrolysis.

155 citations


Journal ArticleDOI
TL;DR: Starting from the addition of small monomers in the PbI2 precursor, a polymerization-assisted grain growth strategy is introduced in the sequential deposition method, and a champion power conversion efficiency (PCE) of 23.0% is obtained.
Abstract: Intrinsically, detrimental defects accumulating at the surface and grain boundaries limit both the performance and stability of perovskite solar cells. Small molecules and bulkier polymers with functional groups are utilized to passivate these ionic defects but usually suffer from volatility and precipitation issues, respectively. Here, starting from the addition of small monomers in the PbI2 precursor, a polymerization-assisted grain growth strategy is introduced in the sequential deposition method. With a polymerization process triggered during the PbI2 film annealing, the bulkier polymers formed will be adhered to the grain boundaries, retaining the previously established interactions with PbI2 . After perovskite formation, the polymers anchored on the boundaries can effectively passivate undercoordinated lead ions and reduce the defect density. As a result, a champion power conversion efficiency (PCE) of 23.0% is obtained, together with a prolonged lifetime where 85.7% and 91.8% of the initial PCE remain after 504 h continuous illumination and 2208 h shelf storage, respectively.

148 citations


Journal ArticleDOI
TL;DR: Using whole-genome shotgun metagenomic and untargeted metabolomic methods, a combinatorial marker panel is identified that robustly discriminated MDD from HC individuals in both the discovery and validation sets, providing a deep insight into understanding of the roles of disturbed gut ecosystem in MDD.
Abstract: Gut microbiome disturbances have been implicated in major depressive disorder (MDD). However, little is known about how the gut virome, microbiome, and fecal metabolome change, and how they interact in MDD. Here, using whole-genome shotgun metagenomic and untargeted metabolomic methods, we identified 3 bacteriophages, 47 bacterial species, and 50 fecal metabolites showing notable differences in abundance between MDD patients and healthy controls (HCs). Patients with MDD were mainly characterized by increased abundance of the genus Bacteroides and decreased abundance of the genera Blautia and Eubacterium. These multilevel omics alterations generated a characteristic MDD coexpression network. Disturbed microbial genes and fecal metabolites were consistently mapped to amino acid (γ-aminobutyrate, phenylalanine, and tryptophan) metabolism. Furthermore, we identified a combinatorial marker panel that robustly discriminated MDD from HC individuals in both the discovery and validation sets. Our findings provide a deep insight into understanding of the roles of disturbed gut ecosystem in MDD.

Journal ArticleDOI
01 Jan 2020
TL;DR: In this article, a conductive microstructured air-gap gate with two-dimensional semiconductor transistors was used to create capacitive and transistor-based pressure sensors with tunable sensitivity and pressure-sensing range.
Abstract: Microscopic pressure sensors that can rapidly detect small pressure variations are of value in robotic technologies, human–machine interfaces, artificial intelligence and health monitoring devices. However, both capacitive and transistor-based pressure sensors have limitations in terms of sensitivity, response speed, stability and power consumption. Here we show that highly sensitive pressure sensors can be created by integrating a conductive microstructured air-gap gate with two-dimensional semiconductor transistors. The air-gap gate can be used to create capacitor-based sensors that have tunable sensitivity and pressure-sensing range, exhibiting an average sensitivity of 44 kPa−1 in the 0–5 kPa regime and a peak sensitivity up to 770 kPa−1. Furthermore, by employing the air-gap gate as a pressure-sensitive gate for two-dimensional semiconductor transistors, the pressure sensitivity of the device can be amplified to ~103–107 kPa−1 at an optimized pressure regime of ~1.5 kPa. Our sensors also offer fast response speeds, low power consumption, low minimum pressure detection limits and excellent stability. We illustrate their capabilities by using them to perform static pressure mapping, real-time human pulse wave measurements, sound wave detection and remote pressure monitoring. Pressure sensors with a sensitivity of ~103−107 kPa−1, as well as rapid response speeds, low power consumption and excellent stability, can be created by integrating a conductive microstructured air-gap gate with two-dimensional semiconductor transistors.

Journal ArticleDOI
TL;DR: It is observed that the size mismatch of the mixed "A" site composition films and devices leads to a steric effect to impede the migration pathways of ions to increase the activation energy of ion migration, which is demonstrated through multiple theoretical and experimental evidence.
Abstract: The operational instability of perovskite solar cells (PSCs) is known to mainly originate from the migration of ionic species (or charged defects) under a potential gradient. Compositional engineering of the "A" site cation of the ABX3 perovskite structure has been shown to be an effective route to improve the stability of PSCs. Here, the effect of size-mismatch-induced lattice distortions on the ion migration energetics and operational stability of PSCs is investigated. It is observed that the size mismatch of the mixed "A" site composition films and devices leads to a steric effect to impede the migration pathways of ions to increase the activation energy of ion migration, which is demonstrated through multiple theoretical and experimental evidence. Consequently, the mixed composition devices exhibit significantly improved thermal stability under continuous heating at 85 °C and operational stability under continuous 1 sun illumination, with an extrapolated lifetime of 2011 h, compared to the 222 h of the reference device.

Journal ArticleDOI
TL;DR: The progress that the theoretical descriptor has evolved to reconcile the observed differences between extended and nanoscale Pt surfaces is reviewed, and the needs in advancing both characterizations and theories in order to understand ORR in the more complex Pt-alloy nanocatalysts are highlighted.
Abstract: Increasing the platinum utilization efficiency is the key to the advancement and broad dissemination of proton-exchange-membrane fuel cells (PEMFCs). Central to the task is the creation of highly a...

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1277 moreInstitutions (142)
TL;DR: In this paper, the authors perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state, and find that all scenarios from prompt collapse to long-lived or even stable remnants are possible.
Abstract: GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a Z-scheme α-Bi2O3/CuBi 2O4 composite with high-quality interfaces using an in situ synthesis method.
Abstract: The design of efficient, stable and biocompatible photocatalysts for air purification is still a challenge. In this work, we report a Z-scheme α-Bi2O3/CuBi2O4 composite with high-quality interfaces using an in situ synthesis method. The α-Bi2O3/CuBi2O4 displays significantly enhanced photocatalytic activity for NO removal (30 %) in comparison with α-Bi2O3 (17 %) under visible light irradiation. Based on characterizations, theoretical calculations and ESR tests, the Z-scheme migration mechanism of photoinduced electrons and holes on α-Bi2O3/CuBi2O4 heterojunction was proposed. The formation of intermediates and products was monitored by in situ DRIFTS. The NO adsorption and activation on α-Bi2O3/CuBi2O4 surface are more favorable than that on α-Bi2O3 surface. The α-Bi2O3/CuBi2O4 also shows high selectivity for the conversion of NO to NO- 3. Moreover, the cytotoxicity of α-Bi2O3/CuBi2O4 exposed to human alveolar epithelial cell has been evaluated for its potential application in air purification. This work provides a new perspective regarding the design of Z-scheme heterojunctions by an in situ method and a promising photocatalyst suitable for air pollution control.


Journal ArticleDOI
TL;DR: Although resveratrol has been claimed as a master anti‐aging agent against several age‐associated diseases, further detailed mechanistic investigation is still required to thoroughly unravel the therapeutic value of resver atrol against cardiovascular diseases at different stages of disease development.
Abstract: Resveratrol (trans-3,4',5-trihydroxystilbene) belongs to the family of natural phytoalexins. Resveratrol first came to our attention in 1992, following reports of the cardioprotective effects of red wine. Thereafter, resveratrol was shown to exert antioxidant, anti-inflammatory, anti-proliferative, and angio-regulatory effects against atherosclerosis, ischaemia, and cardiomyopathy. This article critically reviews the current findings on the molecular basis of resveratrol-mediated cardiovascular benefits, summarizing the broad effects of resveratrol on longevity regulation, energy metabolism, stress resistance, exercise mimetics, circadian clock, and microbiota composition. In addition, this article also provides an update, both preclinically and clinically, on resveratrol-induced cardiovascular protection and discusses the adverse and inconsistent effects of resveratrol reported in both preclinical and clinical studies. Although resveratrol has been claimed as a master anti-aging agent against several age-associated diseases, further detailed mechanistic investigation is still required to thoroughly unravel the therapeutic value of resveratrol against cardiovascular diseases at different stages of disease development. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1421 moreInstitutions (156)
TL;DR: In this article, a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSRJ0737-3039A), was presented.
Abstract: We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perform targeted searches that assume a tight coupling between the gravitational-wave and electromagnetic signal phase evolution. We also present constraints on PSR J0711-6830, the Crab pulsar, and the Vela pulsar from a search that relaxes this assumption, allowing the gravitational-wave signal to vary from the electromagnetic expectation within a narrow band of frequencies and frequency derivatives.

Journal ArticleDOI
TL;DR: In this article, using 16S ribosomal RNA (rRNA) gene sequencing, the microbial compositions of 165 subjects with MDD are compared with 217 BD, and 217 healthy controls (HCs).
Abstract: Discriminating depressive episodes of bipolar disorder (BD) from major depressive disorder (MDD) is a major clinical challenge. Recently, gut microbiome alterations are implicated in these two mood disorders; however, little is known about the shared and distinct microbial characteristics in MDD versus BD. Here, using 16S ribosomal RNA (rRNA) gene sequencing, the microbial compositions of 165 subjects with MDD are compared with 217 BD, and 217 healthy controls (HCs). It is found that the microbial compositions are different between the three groups. Compared to HCs, MDD is characterized by altered covarying operational taxonomic units (OTUs) assigned to the Bacteroidaceae family, and BD shows disturbed covarying OTUs belonging to Lachnospiraceae, Prevotellaceae, and Ruminococcaceae families. Furthermore, a signature of 26 OTUs is identified that can distinguish patients with MDD from those with BD or HCs, with area under the curve (AUC) values ranging from 0.961 to 0.986 in discovery sets, and 0.702 to 0.741 in validation sets. Moreover, 4 of 26 microbial markers correlate with disease severity in MDD or BD. Together, distinct gut microbial compositions are identified in MDD compared to BD and HCs, and a novel marker panel is provided for distinguishing MDD from BD based on gut microbiome signatures.

Journal ArticleDOI
17 Sep 2020-ACS Nano
TL;DR: A straightforward approach to highly sensitive and robust flexible pressure sensors with fast response time and low operating voltage based on conductive micropyramids made of polydimethylsiloxane/carbon nanotube composites that enable large-area pressure-sensing arrays for spatially resolved pressure mapping.
Abstract: Flexible pressure sensors that can robustly mimic the function of slow-adapting type I (SA-I) mechanoreceptors are essential for realizing human-like object manipulation in artificial intelligent (...

Journal ArticleDOI
TL;DR: In this paper, a mild encapsulation strategy was proposed to maintain the original performance of solar cell devices by utilization of ethylene glycol-induced immediate layer to minimize the damage of plasma-enhanced atomic layer deposition to perovskite solar cells.

Journal ArticleDOI
TL;DR: In this article, an optimized δ-MnOx/activated carbon was synthesized via in situ reduction coupled with ammonia modification, and the developed method was found to allow easy OV control for large-scale production.
Abstract: Although oxygen vacancies (OVs) commonly act as adsorption/active sites in catalytic oxidation of formaldehyde (HCHO), thereby strongly influencing catalyst activity, their control and translation into scale-up products for practical application remain challenging. Herein, δ-MnOx/activated carbon was synthesized via in situ reduction coupled with ammonia modification, and the developed method was found to allow easy OV control for large-scale production. OV concentration was effectively regulated through adjustment of Mn3+ content, and OV roles in the catalytic reaction were probed by several techniques. The optimized catalyst featured superior HCHO removal efficiency and CO2 selectivity at room temperature, mainly due to oxygen activation by abundant OVs to form reactive oxygen species. The intermediates and pathways of HCHO removal were investigated. Thus, this work provides insights into the enhancement of active site exposure through OV control for a single bulk catalyst and demonstrates its applicability for efficient and commercially viable room-temperature oxidation of HCHO.

Journal ArticleDOI
TL;DR: Almost all of the H9 AIVs and many H7N9 and H6N2 strains prefer human-type receptors, posing an increased risk for human infections, which greatly impacts the prevention and control of Aivs in China and worldwide.
Abstract: We have surveyed avian influenza virus (AIV) genomes from live poultry markets within China since 2014. Here we present a total of 16,091 samples that were collected from May 2016 to February 2019 in 23 provinces and municipalities in China. We identify 2048 AIV-positive samples and perform next generation sequencing. AIV-positive rates (12.73%) from samples had decreased substantially since 2016, compared to that during 2014–2016 (26.90%). Additionally, H9N2 has replaced H5N6 and H7N9 as the dominant AIV subtype in both chickens and ducks. Notably, novel reassortants and variants continually emerged and disseminated in avian populations, including H7N3, H9N9, H9N6 and H5N6 variants. Importantly, almost all of the H9 AIVs and many H7N9 and H6N2 strains prefer human-type receptors, posing an increased risk for human infections. In summary, our nation-wide surveillance highlights substantial changes in the circulation of AIVs since 2016, which greatly impacts the prevention and control of AIVs in China and worldwide. In this study, the authors present a genomic surveillance of avian influenza genomes sampled from live poultry markets in China. They report that a number of variants have emerged since 2016 that pose an increased risk to humans. They highlight the importance of continuous genome surveillance of circulating influenza strains.

Journal ArticleDOI
TL;DR: In this article, a Van der Waals tunneling heterostructure is proposed for near-infrared photodetection by combining WSe2 and Bi2Se3, which shows an ultralow dark current below pico-ampere and a high tunnelingdominated photocurrent.
Abstract: Tunneling heterostructures are emerging as a versatile architecture for photodetection due to their advanced optical sensitivity, tailorable detection band, and well- balanced photoelectric performances However, the existing tunneling heterostructures are mainly operated in the visible wavelengths and have been rarely investigated for the near-infrared detection Herein, we report the design and realization of a novel broken-gap tunneling heterostructure by combining WSe2 and Bi2Se3, which is able to realize the simultaneous visible and near-infrared detection because of the complementary bandgaps of WSe2 and Bi2Se3 (146 and 03 eV, respectively) Thanks to the realigned band structure, the heterostructure shows an ultralow dark current below pico-ampere and a high tunneling-dominated photocurrent The photodetector based on our tunneling heterostructure exhibits a superior specific detectivity of 79× 1012 Jones for a visible incident of 532 nm and 22× 1010 Jones for a 1456 nm near-infrared illumination Our study demonstrates a new band structure engineering avenue for the construction of van der Waals tunneling heterostructures for high-performance wide band photodetection

Journal ArticleDOI
TL;DR: Substrate-tolerant nano-heteroepitaxy of high-quality formamidinium-lead-tri-iodide (FAPbI3) perovskite films with efficiencies and stabilities superior to those of devices fabricated without NHE are demonstrated.
Abstract: Conventional epitaxy of semiconductor films requires a compatible single crystalline substrate and precisely controlled growth conditions, which limit the price competitiveness and versatility of the process. We demonstrate substrate-tolerant nano-heteroepitaxy (NHE) of high-quality formamidinium-lead-tri-iodide (FAPbI3) perovskite films. The layered perovskite templates the solid-state phase conversion of FAPbI3 from its hexagonal non-perovskite phase to the cubic perovskite polymorph, where the growth kinetics are controlled by a synergistic effect between strain and entropy. The slow heteroepitaxial crystal growth enlarged the perovskite crystals by 10-fold with a reduced defect density and strong preferred orientation. This NHE is readily applicable to various substrates used for devices. The proof-of-concept solar cell and light-emitting diode devices based on the NHE-FAPbI3 showed efficiencies and stabilities superior to those of devices fabricated without NHE.

Journal ArticleDOI
TL;DR: The 2D surface-functionalized MHP renders significantly reduced trap density, environmental stability, and an ion-migration-immune surface in addition to a fast radiative recombination owing to its spatially and potentially confined charge carriers, simultaneously, and heterophased MHP LEDs show substantial improvement in operational lifetime.
Abstract: Although metal halide perovskite (MHP) light-emitting diodes (LEDs) have demonstrated great potential in terms of electroluminescence efficiency, the operational stability of MHP LEDs currently remains the biggest bottleneck toward their practical usage. Well-confined excitons/charge carriers in a dielectric/quantum well based on conventional spatial or potential confinement approaches substantially enhance radiative recombination in MHPs, but an increased surface-to-volume ratio and multiphase interfaces likely result in a high degree of surface or interface defect states, which brings about a critical environmentally/operationally vulnerable point on LED stability. Here, an effective solution is suggested to mitigate such drawbacks using strategically designed surface-2D/bulk-3D heterophased MHP nanograins for long-term-stable LEDs. The 2D surface-functionalized MHP renders significantly reduced trap density, environmental stability, and an ion-migration-immune surface in addition to a fast radiative recombination owing to its spatially and potentially confined charge carriers, simultaneously. As a result, heterophased MHP LEDs show substantial improvement in operational lifetime (T50 : >200 h) compared to conventional pure 3D or quasi-2D counterparts (T50 : < 0.2 h) as well as electroluminescence efficiency (surface-2D/bulk-3D: ≈7.70 ph per el% and pure 3D: ≈0.46 ph per el%).

Journal ArticleDOI
TL;DR: The realization of high-quality van der Waals contacts on monocrystalline halide perovskite thin films enables the probing of their long-range carrier and photocarrier transport properties, laying the foundation for exploring new physics in this class of ‘soft-lattice’ materials.
Abstract: Lead halide perovskites have attracted increasing interest for their exciting potential in diverse optoelectronic devices. However, their charge transport properties remain elusive, plagued by the issues of excessive contact resistance and large hysteresis in ambient conditions. Here we report a van der Waals integration approach for creating high-performance contacts on monocrystalline halide perovskite thin films with minimum interfacial damage and an atomically clean interface. Compared to the deposited contacts, our van der Waals contacts exhibit two to three orders of magnitude lower contact resistance, enabling systematic transport studies in a wide temperature range. We report a Hall mobility exceeding 2,000 cm2 V–1 s–1 at around 80 K, an ultralow bimolecular recombination coefficient of 3.5 × 10–15 cm3 s–1 and a photocurrent gain >106 in the perovskite thin films. Furthermore, magnetotransport studies reveal a quantum-interference-induced weak localization behaviour with a phase coherence length up to 49 nm at 3.5 K. Our results lay the foundation for exploring new physics in this class of ‘soft-lattice’ materials. The realization of high-quality van der Waals contacts on monocrystalline halide perovskite thin films enables the probing of their long-range carrier and photocarrier transport properties.

Journal ArticleDOI
TL;DR: Zonation-dependent transcriptomic changes in aged mouse brain endothelial cells (ECs) are reported, which prominently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs).
Abstract: The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovascular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation-dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which prominently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood-brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed transcriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.