scispace - formally typeset
Search or ask a question
Institution

Bar-Ilan University

EducationRamat Gan, Israel
About: Bar-Ilan University is a education organization based out in Ramat Gan, Israel. It is known for research contribution in the topics: Population & Poison control. The organization has 12835 authors who have published 34964 publications receiving 995648 citations. The organization is also known as: Bar Ilan University & BIU.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of post-lithium-ion batteries is presented in this paper with a focus on their operating principles, advantages and the challenges that they face, and the volumetric energy density of each battery is examined using a commercial pouch-cell configuration.
Abstract: Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead–acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations. Post-lithium-ion batteries are reviewed with a focus on their operating principles, advantages and the challenges that they face. The volumetric energy density of each battery is examined using a commercial pouch-cell configuration to evaluate its practical significance and identify appropriate research directions.

3,314 citations

Journal ArticleDOI
TL;DR: 1H and 13C chemical shifts of what are, in the authors' experience, the most popular “extra peaks” in a variety of commonly used NMR solvents are collected, in the hope that this will be of assistance to the practicing chemist.
Abstract: In the course of the routine use of NMR as an aid for organic chemistry, a day-to-day problem is the identification of signals deriving from common contaminants (water, solvents, stabilizers, oils) in less-than-analytically-pure samples. This data may be available in the literature, but the time involved in searching for it may be considerable. Another issue is the concentration dependence of chemical shifts (especially 1H); results obtained two or three decades ago usually refer to much more concentrated samples, and run at lower magnetic fields, than today’s practice. We therefore decided to collect 1H and 13C chemical shifts of what are, in our experience, the most popular “extra peaks” in a variety of commonly used NMR solvents, in the hope that this will be of assistance to the practicing chemist.

3,225 citations

Book
28 Apr 1997
TL;DR: This book describes the extremely powerful technique of molecular dynamics simulation, which involves solving the classical many-body problem in contexts relevant to the study of matter at the atomic level.
Abstract: From the Publisher: This book describes the extremely powerful technique of molecular dynamics simulation, which involves solving the classical many-body problem in contexts relevant to the study of matter at the atomic level. The method allows the prediction of the static and dynamic properties of substances directly from the underlying interactions between the molecules. Because there is no alternative approach capable of handling such a broad range of problems at the required level of detail, molecular dynamics methods have proved themselves indispensable in both pure and applied research.

3,124 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA).
Abstract: We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function-based multifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series with those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima method, and show that the results are equivalent.

2,967 citations

Journal ArticleDOI
TL;DR: Tables of 1H and 13C NMR chemical shifts have been compiled for common organic compounds often used as reagents or found as products or contaminants in deuterated organic solvents as discussed by the authors.

2,757 citations


Authors

Showing all 13037 results

NameH-indexPapersCitations
H. Eugene Stanley1541190122321
Albert-László Barabási152438200119
Shlomo Havlin131101383347
Stuart A. Aaronson12965769633
Britton Chance128111276591
Mark A. Ratner12796868132
Doron Aurbach12679769313
Jun Yu121117481186
Richard J. Wurtman11493353290
Amir Lerman11187751969
Zhu Han109140748725
Moussa B.H. Youdim10757442538
Juan Bisquert10745046267
Rachel Yehuda10646136726
Michael F. Green10648545707
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

93% related

Boston University
119.6K papers, 6.2M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022330
20212,287
20202,157
20191,920
20181,769