scispace - formally typeset
Search or ask a question
Institution

Bar-Ilan University

EducationRamat Gan, Israel
About: Bar-Ilan University is a education organization based out in Ramat Gan, Israel. It is known for research contribution in the topics: Population & Poison control. The organization has 12835 authors who have published 34964 publications receiving 995648 citations. The organization is also known as: Bar Ilan University & BIU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, ZnSe nanoparticles of about 3 nm in size have been prepared by the sonochemical irradiation of an aqueous solution of selenourea and zinc acetate under argon.
Abstract: ZnSe nanoparticles of about 3 nm in size have been prepared by the sonochemical irradiation of an aqueous solution of selenourea and zinc acetate under argon. The ZnSe nanoparticles were characterized using techniques such as transmission electron microscopy, X-ray diffraction, absorption spectroscopy, differential scanning calorimetry, transmission and diffuse reflection spectroscopy, photoluminescence spectroscopy, and energy-dispersive X-ray analysis. The mechanism of the sonochemical irradiation is discussed. This sonochemical method was found to be a general method for the preparation of other selenides as well.

194 citations

Journal ArticleDOI
TL;DR: This work improves the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude, and demonstrates the detection of 1,700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise ratio.
Abstract: The detection and characterization of paramagnetic species by electron spin resonance (ESR) spectroscopy is widely used throughout chemistry, biology and materials science 1 , from in vivo imaging 2 to distance measurements in spin-labelled proteins 3. ESR relies on the inductive detection of microwave signals emitted by the spins into a coupled microwave resonator during their Larmor precession. However, such signals can be very small, prohibiting the application of ESR at the nanoscale (for example, at the single-cell level or on individual nanoparticles). Here, using a Josephson parametric microwave amplifier combined with high-quality-factor super-conducting microresonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude 4,5. We demonstrate the detection of 1,700 bismuth donor spins in silicon within a single Hahn 6 echo with unit signal-to-noise ratio, reduced to 150 spins by averaging a single Carr–Purcell– Meiboom–Gill sequence 7. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance. The detection volume of our resonator is ∼0.02 nl, and our approach can be readily scaled down further to improve sensitivity, providing a new versatile toolbox for ESR at the nanoscale

194 citations

Journal ArticleDOI
TL;DR: A targeted attack probability function that is dependent upon node degree is introduced and the robustness of two types of NON under targeted attack is studied, showing how the central network becomes more vulnerable as the number of networks with the same coupling strength q increases.
Abstract: The robustness of a network of networks (NON) under random attack has been studied recently [Gao et al., Phys. Rev. Lett. 107, 195701 (2011)]. Understanding how robust a NON is to targeted attacks is a major challenge when designing resilient infrastructures. We address here the question how the robustness of a NON is affected by targeted attack on high- or low-degree nodes. We introduce a targeted attack probability function that is dependent upon node degree and study the robustness of two types of NON under targeted attack: (i) a tree of n fully interdependent Erdős-Renyi or scale-free networks and (ii) a starlike network of n partially interdependent Erdős-Renyi networks. For any tree of n fully interdependent Erdős-Renyi networks and scale-free networks under targeted attack, we find that the network becomes significantly more vulnerable when nodes of higher degree have higher probability to fail. When the probability that a node will fail is proportional to its degree, for a NON composed of Erdős-Renyi networks we find analytical solutions for the mutual giant component P(∞) as a function of p, where 1-p is the initial fraction of failed nodes in each network. We also find analytical solutions for the critical fraction p(c), which causes the fragmentation of the n interdependent networks, and for the minimum average degree k[over ¯](min) below which the NON will collapse even if only a single node fails. For a starlike NON of n partially interdependent Erdős-Renyi networks under targeted attack, we find the critical coupling strength q(c) for different n. When q>q(c), the attacked system undergoes an abrupt first order type transition. When q≤q(c), the system displays a smooth second order percolation transition. We also evaluate how the central network becomes more vulnerable as the number of networks with the same coupling strength q increases. The limit of q=0 represents no dependency, and the results are consistent with the classical percolation theory of a single network under targeted attack.

194 citations

Journal ArticleDOI
TL;DR: In this paper, a microfluidic system for simultaneously measuring single cell mass and cell cycle progression over multiple generations was introduced, which revealed a decrease in the growth rate variability at the G1/S phase transition, suggesting the presence of a growth rate threshold for maintaining size homeostasis.
Abstract: We introduce a microfluidic system for simultaneously measuring single cell mass and cell cycle progression over multiple generations. We use this system to obtain over 1,000 hours of growth data from mouse lymphoblast and pro-B-cell lymphoid cell lines. Cell lineage analysis revealed a decrease in the growth rate variability at the G1/S phase transition, which suggests the presence of a growth rate threshold for maintaining size homeostasis.

194 citations

Journal ArticleDOI
TL;DR: The results of this study of first episode schizophrenia patients suggest that a relationship exists between negative symptoms and cognitive dysfunction, and this finding provides support for the theory that the neurobiological processes that give rise to symptomatology and Cognitive dysfunction in schizophrenia are partially overlapping.

194 citations


Authors

Showing all 13037 results

NameH-indexPapersCitations
H. Eugene Stanley1541190122321
Albert-László Barabási152438200119
Shlomo Havlin131101383347
Stuart A. Aaronson12965769633
Britton Chance128111276591
Mark A. Ratner12796868132
Doron Aurbach12679769313
Jun Yu121117481186
Richard J. Wurtman11493353290
Amir Lerman11187751969
Zhu Han109140748725
Moussa B.H. Youdim10757442538
Juan Bisquert10745046267
Rachel Yehuda10646136726
Michael F. Green10648545707
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

93% related

Boston University
119.6K papers, 6.2M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022330
20212,287
20202,157
20191,920
20181,769