scispace - formally typeset
Search or ask a question
Institution

General Electric

CompanyBoston, Massachusetts, United States
About: General Electric is a company organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Turbine & Signal. The organization has 76365 authors who have published 110557 publications receiving 1885108 citations. The organization is also known as: General Electric Company & GE.
Topics: Turbine, Signal, Rotor (electric), Coating, Combustor


Papers
More filters
Posted Content
TL;DR: The proposed Fully Convolutional Network (FCN) achieves premium performance to other state-of-the-art approaches and the exploration of the very deep neural networks with the ResNet structure is also competitive.
Abstract: We propose a simple but strong baseline for time series classification from scratch with deep neural networks. Our proposed baseline models are pure end-to-end without any heavy preprocessing on the raw data or feature crafting. The proposed Fully Convolutional Network (FCN) achieves premium performance to other state-of-the-art approaches and our exploration of the very deep neural networks with the ResNet structure is also competitive. The global average pooling in our convolutional model enables the exploitation of the Class Activation Map (CAM) to find out the contributing region in the raw data for the specific labels. Our models provides a simple choice for the real world application and a good starting point for the future research. An overall analysis is provided to discuss the generalization capability of our models, learned features, network structures and the classification semantics.

445 citations

Journal ArticleDOI
TL;DR: In this paper, the intrinsic viscosity and viscoelastic properties of branched molecules in dilute solution are calculated by means of the normal coordinate method of Rouse modified to include hydrodynamic interactions.
Abstract: Theoretical formulas for the intrinsic viscosity and viscoelastic properties of some model branched molecules in dilute solution are calculated by means of the normal coordinate method of Rouse modified to include hydrodynamic interactions. The calculations are exact except for the usual approximation of the hydrodynamic interaction by the Kirkwood-Riseman formula. The ratio of the intrinsic viscosity of a branched molecule to that of a linear molecule of the same weight is found to vary almost as the square root of the ratio of the mean square radii, instead of as the latter ratio to three-halves power, as has been postulated before. It is proposed that this square root relation is applicable in general to branched molecules of all types. Several sets of experimental data in the literature are shown to agree well with this hypothesis.

443 citations

Journal ArticleDOI
TL;DR: Three limiting cases are identified which result in one-phase models of binary systems of binary alloy solidification and each of these models can be readily implemented in standard single phase flow numerical codes.

441 citations

Patent
27 Dec 1971
TL;DR: In this article, the diamond content is supported on and directly bonded to an extremely stiff sintered carbide substrate in order to provide mechanical support therefor to more effectively utilize the high elastic modulus of the diamond.
Abstract: Diamond tools and superpressure processes for the preparation thereof are described wherein the diamond content is present either in the form of a mass comprising diamond crystals bonded to each other or of a thin skin of diamond crystals bonded to each other. In each instance the diamond content is supported on and directly bonded to an extremely stiff sintered carbide substrate in order to provide mechanical support therefor to more effectively utilize the high elastic modulus of the diamond.

441 citations

Journal ArticleDOI
TL;DR: Menter et al. as mentioned in this paper proposed a new correlation-based transition model based on local variables, which is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution.
Abstract: A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I of this paper (Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Volker, S., 2006, ASME J. Turbomach., 128(3), pp. 413–422) gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation. Part II (this part) details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications, including the drag crisis of a cylinder, separation-induced transition on a circular leading edge, and natural transition on a wind turbine airfoil. Turbomachinery test cases include a highly loaded compressor cascade, a low-pressure turbine blade, a transonic turbine guide vane, a 3D annular compressor cascade, and unsteady transition due to wake impingement. In addition, predictions are shown for an actual industrial application, namely, a GE low-pressure turbine vane. In all cases, good agreement with the experiments could be achieved and the authors believe that the current model is a significant step forward in engineering transition modeling.

436 citations


Authors

Showing all 76370 results

NameH-indexPapersCitations
Cornelia M. van Duijn1831030146009
Krzysztof Matyjaszewski1691431128585
Gary H. Glover12948677009
Mark E. Thompson12852777399
Ron Kikinis12668463398
James E. Rothman12535860655
Bo Wang119290584863
Wei Lu111197361911
Harold J. Vinegar10837930430
Peng Wang108167254529
Hans-Joachim Freund10696246693
Carl R. Woese10527256448
William J. Koros10455038676
Thomas A. Lipo10368243110
Gene H. Golub10034257361
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

86% related

Bell Labs
59.8K papers, 3.1M citations

86% related

Georgia Institute of Technology
119K papers, 4.6M citations

86% related

Argonne National Laboratory
64.3K papers, 2.4M citations

85% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202216
2021415
20201,027
20191,418
20181,862