scispace - formally typeset
Search or ask a question
Institution

General Electric

CompanyBoston, Massachusetts, United States
About: General Electric is a company organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Turbine & Signal. The organization has 76365 authors who have published 110557 publications receiving 1885108 citations. The organization is also known as: General Electric Company & GE.
Topics: Turbine, Signal, Rotor (electric), Coating, Combustor


Papers
More filters
Journal ArticleDOI
TL;DR: An adaptive algorithm for radar target detection using an antenna array is proposed that contains a simplified test statistic that is a limiting case of the GLRT detector.
Abstract: An adaptive algorithm for radar target detection using an antenna array is proposed. The detector is derived in a manner similar to that of the generalized likelihood-ratio test (GLRT) but contains a simplified test statistic that is a limiting case of the GLRT detector. This simplified detector is analyzed for performance to signals on boresight, as well as when the signal direction is misaligned with the look direction. >

1,430 citations

Journal ArticleDOI
John F. Schenck1
TL;DR: The quantitative use of susceptibility data is important to MRI, but the use of literature values for the susceptibility of materials is often difficult because of inconsistent traditions in the definitions and units used for magnetic parameters-particularly susceptibility.
Abstract: The concept of magnetic susceptibility is central to many current research and development activities in magnetic resonance imaging (MRI); for example, the development of MR-guided surgery has created a need for surgical instruments and other devices with susceptibility tailored to the MR environment; susceptibility effects can lead to position errors of up to several millimeters in MR-guided stereotactic surgery; and the variation of magnetic susceptibility on a microscopic scale within tissues contributes to MR contrast and is the basis of functional MRI. The magnetic aspects of MR compatibility are discussed in terms of two levels of acceptability: Materials with the first kind of magnetic field compatibility are such that magnetic forces and torques do not interfere significantly when the materials are used within the magnetic field of the scanner; materials with the second kind of magnetic field compatibility meet the more demanding requirement that they produce only negligible artifacts within the MR image and their effect on the positional accuracy of features within the image is negligible or can readily be corrected. Several materials exhibiting magnetic field compatibility of the second kind have been studied and a group of materials that produce essentially no image distortion, even when located directly within the imaging field of view, is identified. Because of demagnetizing effects, the shape and orientation, as well as the susceptibility, of objects within and adjacent to the imaging region is important in MRI. The quantitative use of susceptibility data is important to MRI, but the use of literature values for the susceptibility of materials is often difficult because of inconsistent traditions in the definitions and units used for magnetic parameters-particularly susceptibility. The uniform use of SI units for magnetic susceptibility and related quantities would help to achieve consistency and avoid confusion in MRI.

1,408 citations

Journal ArticleDOI
TL;DR: DRESS is a simple and versatile localization procedure that is readily adaptable to spectral relaxation time measurements by adding inversion or spin-echo refocusing pulses or to in vivo solvent-suppressed spectroscopy of proton (1H) metabolites using a combination of chemical-selective RF pulses.
Abstract: Spatial localization techniques are necessary for in vivo NMR spectroscopy involving heterogeneous organisms. Localization by surface coil NMR detection alone is generally inadequate for deep-lying organs due to contaminating signals from intervening surface tissues. However, localization to preselected planar volumes can be accomplished using a single selective excitation pulse in the presence of a pulsed magnetic field gradient, yielding depth-resolved surface coil spectra (DRESS). Within selected planes, DRESS are spatially restricted by the surface coil sensitivity profiles to disk-shaped volumes whose radii increase with depth, notwithstanding variations in the NMR signal density distribution. Nevertheless, DRESS is a simple and versatile localization procedure that is readily adaptable to spectral relaxation time measurements by adding inversion or spin-echo refocusing pulses or to in vivo solvent-suppressed spectroscopy of proton (1H) metabolites using a combination of chemical-selective RF pulses. Also, the spatial information gathering efficiency of the technique can be improved to provide simultaneous acquisition of spectra from multiple volumes by interleaving excitation of adjacent planes within the normal relaxation recovery period. The spatial selectivity can be improved by adding additional selective excitation spin-echo refocusing pulses to achieve full, three-dimensional point resolved spectroscopy (PRESS) in a single excitation sequence. Alternatively, for samples with short spin-spin relaxation times, DRESS can be combined with other localization schemes, such as image-selected in vivo spectroscopy (ISIS), to provide complete gradient controlled three-dimensional localization with a reduced number of sequence cycles.

1,391 citations

Journal ArticleDOI
TL;DR: In this paper, a thin slab magnetized in its plane is obtained in the magnetostatic limit and the mode distribution in wave-vector space is obtained for both the volume and surface modes, and the dependence of mode density on wavelength is discussed.

1,351 citations

Journal ArticleDOI
TL;DR: In this article, a cylindrical or spherical electrode (collector) immersed in an ionized gas is brought to a suitable potential, it becomes surrounded by a symmetrical space charge region or "sheath" of positive or of negative ions (or electrons).
Abstract: When a cylindrical or spherical electrode (collector) immersed in an ionized gas is brought to a suitable potential, it becomes surrounded by a symmetrical space-charge region or "sheath" of positive or of negative ions (or electrons). Assuming that the gas pressure is so low that the proportion of ions which collide with gas molecules in the sheath is negligibly small, the current taken by the collector can be calculated in terms of the radii of the collector or sheath, the distribution of velocities among the ions arriving at the sheath boundary and the total drop of potential in the sheath. The current is independent of the actual distribution of potential in the sheath provided this distribution satisfies certain conditions.

1,338 citations


Authors

Showing all 76370 results

NameH-indexPapersCitations
Cornelia M. van Duijn1831030146009
Krzysztof Matyjaszewski1691431128585
Gary H. Glover12948677009
Mark E. Thompson12852777399
Ron Kikinis12668463398
James E. Rothman12535860655
Bo Wang119290584863
Wei Lu111197361911
Harold J. Vinegar10837930430
Peng Wang108167254529
Hans-Joachim Freund10696246693
Carl R. Woese10527256448
William J. Koros10455038676
Thomas A. Lipo10368243110
Gene H. Golub10034257361
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

86% related

Bell Labs
59.8K papers, 3.1M citations

86% related

Georgia Institute of Technology
119K papers, 4.6M citations

86% related

Argonne National Laboratory
64.3K papers, 2.4M citations

85% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202216
2021415
20201,027
20191,418
20181,862