scispace - formally typeset
Search or ask a question
Institution

General Electric

CompanyBoston, Massachusetts, United States
About: General Electric is a company organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Turbine & Signal. The organization has 76365 authors who have published 110557 publications receiving 1885108 citations. The organization is also known as: General Electric Company & GE.
Topics: Turbine, Signal, Rotor (electric), Coating, Combustor


Papers
More filters
Journal ArticleDOI
Novak Zuber1
TL;DR: In this article, a steady-state solution of the governing set of equations is applied to an analysis of sedimentation and of fluidization (batch, cocurrent and countercurrent) for the laminar flow regime.

346 citations

Journal ArticleDOI
H. Ehrenreich1
TL;DR: In this article, the authors reviewed and analyzed existing experimental data on GaAs to yield the band structure in the vicinity of the band edges as well as the parameters characterizing the bands summarized in Fig. 1 of this paper.
Abstract: Existing experimental data on GaAs are reviewed and analyzed to yield the band structure in the vicinity of the band edges as well as the parameters characterizing the bands summarized in Fig. 1 of this paper. On the basis of presently existing experimental evidence, chiefly the behavior of the optical band gap in Ga(As, P) alloys and the deduced pressure shift and density of states effective mass, it is thought likely that the subsidiary conduction band minima lie along [100] directions. Analytical expressions including nonparabolic effects are given for the energy and density of states of the [000] conduction band and used to obtain a better value of the effective mass from optical reflectivity data. The experimentally observed structure in the Hall effect in $n$-type material at elevated temperatures is shown to result from excitation of carriers into the subsidiary conduction band. Changes of resistivity with pressure are explained on the basis of an increase of the [000] effective mass at low pressures and the transfer of carriers to the subsidiary minima at higher pressures. The scattering mechanisms, which are important in connection with transport phenomena, are shown to be polar lattice scattering and charged impurity scattering in the highest mobility samples. The transport calculations leading to the mobility and thermoelectric power as a function of temperature and impurity concentrations are performed using variational techniques, and shown to agree well with experiment. The apparently low mobility in the subsidiary minima is attributed at least in part to the large effective mass and relatively small anisotropy ratio. An estimate shows scattering between the two conduction bands probably to be unimportant.

344 citations

Journal ArticleDOI
TL;DR: In this article, the surface reconstruction and size reduction occur through dangling bond saturation, forming nonhexagonal rings and 5-7 defects in the lattice, and forming linear atomic carbon chains in the nanotube body.
Abstract: Dimensional stability is crucial to possible applications of single-walled nanotubes, as their properties are linked to size and topology. We observe nanotubes responding to uniform atom loss, through surface reconstruction and drastic dimensional changes. Experiments using electron irradiation evidence nanotube diameters shrinking from similar to 1.4 to 0.4 nm. Molecular dynamics simulations show that surface reconstruction and size reduction occur through dangling bond saturation, forming nonhexagonal rings and 5-7 defects in the lattice. Nonuniform atom removal results in inhomogeneous tube deformations and local necking, and formation of linear atomic carbon chains in the nanotube body.

344 citations

Journal ArticleDOI
John W. Cahn1
TL;DR: In this article, it was shown that transformations which nucleate heterogeneously will quite often obey a rule of additivity and transform nonisothermally according to simple rate laws which can be calculated from isothermal transformation data.

343 citations

Book ChapterDOI
01 Jan 2009
TL;DR: In this paper, the authors present designs for several distributed concurrency controls and demonstrates that they work correctly and investigates some of the implications of global consistency of a distributed database and discusses phenomena that can prevent termination of application programs.
Abstract: A distributed database system is one in which the database is spread among several sites and application programs “move” from site to site to access and update the data they need. The concurrency control is that portion of the system that responds to the read and write requests of the application programs. Its job is to maintain the global consistency of the distributed database while ensuring that the termination of the application programs is not prevented by phenomena such as deadlock. We assume each individual site has its own local concurrency control which responds to requests at that site and can only communicate with concurrency controls at other sites when an application program moves from site to site, terminates, or aborts.This paper presents designs for several distributed concurrency controls and demonstrates that they work correctly. It also investigates some of the implications of global consistency of a distributed database and discusses phenomena that can prevent termination of application programs.

340 citations


Authors

Showing all 76370 results

NameH-indexPapersCitations
Cornelia M. van Duijn1831030146009
Krzysztof Matyjaszewski1691431128585
Gary H. Glover12948677009
Mark E. Thompson12852777399
Ron Kikinis12668463398
James E. Rothman12535860655
Bo Wang119290584863
Wei Lu111197361911
Harold J. Vinegar10837930430
Peng Wang108167254529
Hans-Joachim Freund10696246693
Carl R. Woese10527256448
William J. Koros10455038676
Thomas A. Lipo10368243110
Gene H. Golub10034257361
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

86% related

Bell Labs
59.8K papers, 3.1M citations

86% related

Georgia Institute of Technology
119K papers, 4.6M citations

86% related

Argonne National Laboratory
64.3K papers, 2.4M citations

85% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202216
2021415
20201,027
20191,418
20181,862