scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Bhubaneswar

EducationBhubaneswar, India
About: Indian Institute of Technology Bhubaneswar is a education organization based out in Bhubaneswar, India. It is known for research contribution in the topics: Large Hadron Collider & Computer science. The organization has 1185 authors who have published 3132 publications receiving 48832 citations.


Papers
More filters
Book ChapterDOI
08 Oct 2019
TL;DR: This tutorial presents a gentle introduction to runtime enforcement (of timed properties) and presents a taxonomy of the main principles and concepts involved in runtime enforcement, and discusses some open challenges and avenues for future work.
Abstract: Runtime enforcement refers to the theories, techniques, and tools for enforcing correct behavior of systems at runtime. We are interested in such behaviors described by specifications that feature timing constraints formalized in what is generally referred to as timed properties. This tutorial presents a gentle introduction to runtime enforcement (of timed properties). First, we present a taxonomy of the main principles and concepts involved in runtime enforcement. Then, we give a brief overview of a line of research on theoretical runtime enforcement where timed properties are described by timed automata and feature uncontrollable events. Then, we mention some tools capable of runtime enforcement, and we present the TiPEX tool dedicated to timed properties. Finally, we present some open challenges and avenues for future work. Runtime Enforcement (RE) is a discipline of computer science concerned with enforcing the expected behavior of a system at runtime. Runtime enforcement extends the traditional runtime verification [12-14, 42, 43] problem by dealing with the situations where the system deviates from its expected behavior. While runtime verification monitors are execution observers, runtime enforcers are execution modifiers. Foundations for runtime enforcement were pioneered by Schneider in [98] and by Rinard in [95] for the specific case of real-time systems. There are several tutorials and overviews on runtime enforcement for untimed systems [39, 47, 59], but none on the enforcement of timed properties (for real-time systems). In this tutorial, we focus on runtime enforcing behavior described by a timed property. Timed properties account for physical time. They allow expressing constraints on the time that should elapse between (sequences of) events, which is useful for real-time systems when specifying timing constraints between statements, their scheduling policies, the completion of tasks, etc [5, 7, 88, 101, 102]. This tutorial comprises four stages: 1. the presentation of a taxonomy of concepts and principles in RE (Sec. 1); 2. the presentation of a framework for the RE of timed properties where specifications are described by timed automata (preliminary concepts are recalled in Sec. 2, the framework is overviewed in Sec. 3, and presented in more details in Sec. 4); 3. the demonstration of the TiPEX [82] tool implementing the framework (Sec. 5); 4. the description of some avenues for future work (Sec. 6).

21 citations

Journal ArticleDOI
TL;DR: In this article, the authors optimized the temperature and roasting time to obtain good quality ilmenite pellets made of concentrates obtained from low-grade ILLO ores of Odisha, India.

21 citations

Journal ArticleDOI
TL;DR: In this article, a visible-light-driven magnetically retrievable nanophotocatalyst made of porous ruthenium nanoparticles supported on magnetic carbon nitride (g-C3N4/Fe3O4/p-RuNP) is presented for the facile removal/degradation of aromatic amines and azo dyes from wastewater.
Abstract: Herein, we present the development of a visible-light-driven magnetically retrievable nanophotocatalyst made of porous ruthenium nanoparticles supported on magnetic carbon nitride (g-C3N4/Fe3O4/p-RuNP) for the facile removal/degradation of aromatic amines and azo dyes from wastewater. Aromatic amines and azo-based dyes in water bodies are highly toxic and carcinogenic even at very low concentrations and are difficult to separate because of their high solubility. Our nanocatalyst can efficiently degrade/decompose the aromatic amines and azo dyes under visible light (LED/sunlight) at room temperature and in a wide pH range (pH 5.0–9.0) without using any external chemicals. The magnetic property of the nanocatalyst facilitates its efficient and facile separation from the reaction mixture for reuse in multiple photocatalytic cycles. The nanocatalyst-based degradation of azo dyes and aromatic amines presented here is simple and convenient in terms of efficiency, energy, reusability and cost. The process also does not require any external chemicals and forms gaseous/less harmful end products.

21 citations

Journal ArticleDOI
TL;DR: A study has been conducted in the heavily populated coastal areas of the Puri district (Odisha, India) with the aim to identify the factors that influence the major ion composition and concentrations of trace elements in groundwater; and determine the spatial distribution of the water-quality parameters and how they vary on a seasonal basis as mentioned in this paper.
Abstract: A study has been conducted in the heavily populated coastal areas of the Puri district (Odisha, India) with the aim to: (1) identify the factors that influence the major ion composition and concentrations of trace elements in groundwater; (2) determine the spatial distribution of the water-quality parameters and how they vary on a seasonal basis. To do this, groundwater samples were collected from 60 shallow tube wells located along the Puri coast during the pre-monsoon and post-monsoon seasons. Based on their TDS content, 52% of the collected groundwater samples were identified as being brackish-to-saline and unsuitable for drinking purposes in both the pre- and post-monsoon seasons. Significant concentrations of trace elements including Ba, Br, F, Fe, Mn, and Sr were detected in most of the samples. Iron concentrations were found to be higher than the WHO drinking water guideline value (0.3 mg/l) in 92% of the samples irrespective of seasons. Elevated Mn concentrations were observed in 37% and 40% of samples during the pre-monsoon and post-monsoon seasons, respectively. In addition, fluoride concentrations in excess of the WHO limit (1.5 mg/l) were found in 15% of samples during the pre-monsoon and 23% of samples during the post-monsoon season. The concentrations of major and trace elements show wide spatial and minor temporal variations. Large spatial and limited temporal variations in Cl and Na concentrations along with considerable Br and Sr concentrations in groundwater suggest that saltwater intrusion is the dominant process controlling groundwater quality in the study area, although other processes including ion exchange, the precipitation and dissolution of minerals, microbial activity, and the weathering of aquifer material also play roles to some extent in determining the spatial and seasonal distribution of the major and trace elements in coastal groundwater. Grouping of various water-quality parameters related to these processes by principal component analysis and their linking to one cluster in the hierarchical cluster analysis further supports the view that these processes control the groundwater chemistry in the coastal aquifer.

21 citations

Journal ArticleDOI
TL;DR: In this paper, P91 steel plates of thickness 18mm were welded using the shielded metal arc welding process and subjected to different heat treatment condition including post weld heat treatment and re-austenitizing.

21 citations


Authors

Showing all 1220 results

NameH-indexPapersCitations
Gabor Istvan Veres135134996104
Márton Bartók7662226762
Kulamani Parida7046919139
Seema Bahinipati6552619144
Deepak Kumar Sahoo6243817308
Krishna R. Reddy5840011076
Ramayya Krishnan5219510378
Saroj K. Nayak491498319
Dipak Kumar Sahoo472347293
Ganapati Panda463568888
Raj Kishore451496886
Sukumar Mishra444057905
Mar Barrio Luna431795248
Chandra Sekhar Rout411837736
Subhransu Ranjan Samantaray391674880
Network Information
Related Institutions (5)
Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

95% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

94% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

93% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

93% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202329
202249
2021521
2020487
2019400
2018372