scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Bhubaneswar

EducationBhubaneswar, India
About: Indian Institute of Technology Bhubaneswar is a education organization based out in Bhubaneswar, India. It is known for research contribution in the topics: Large Hadron Collider & Computer science. The organization has 1185 authors who have published 3132 publications receiving 48832 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California is quantified using the extensive meteorological, trace gas, and aerosol measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010 as discussed by the authors.
Abstract: . The performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California is quantified using the extensive meteorological, trace gas, and aerosol measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The overall objective of the field campaigns was to obtain data needed to better understand processes that affect both climate and air quality, including emission assessments, transport and chemical aging of aerosols, aerosol radiative effects. Simulations were performed that examined the sensitivity of aerosol concentrations to anthropogenic emissions and to long-range transport of aerosols into the domain obtained from a global model. The configuration of WRF-Chem used in this study is shown to reproduce the overall synoptic conditions, thermally driven circulations, and boundary layer structure observed in region that controls the transport and mixing of trace gases and aerosols. Reducing the default emissions inventory by 50% led to an overall improvement in many simulated trace gases and black carbon aerosol at most sites and along most aircraft flight paths; however, simulated organic aerosol was closer to observed when there were no adjustments to the primary organic aerosol emissions. We found that sulfate was better simulated over northern California whereas nitrate was better simulated over southern California. While the overall spatial and temporal variability of aerosols and their precursors were simulated reasonably well, we show cases where the local transport of some aerosol plumes were either too slow or too fast, which adversely affects the statistics quantifying the differences between observed and simulated quantities. Comparisons with lidar and in situ measurements indicate that long-range transport of aerosols from the global model was likely too high in the free troposphere even though their concentrations were relatively low. This bias led to an over-prediction in aerosol optical depth by as much as a factor of 2 that offset the under-predictions of boundary-layer extinction resulting primarily from local emissions. Lowering the boundary conditions of aerosol concentrations by 50% greatly reduced the bias in simulated aerosol optical depth for all regions of California. This study shows that quantifying regional-scale variations in aerosol radiative forcing and determining the relative role of emissions from local and distant sources is challenging during `clean' conditions and that a wide array of measurements are needed to ensure model predictions are correct for the right reasons. In this regard, the combined CalNex and CARES data sets are an ideal test bed that can be used to evaluate aerosol models in great detail and develop improved treatments for aerosol processes.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the thermodynamic geometry of charged Gauss-Bonnet black holes (and Reissner-Nordstrom black holes, for the sake of comparison) in anti-de Sitter spacetimes in both ($T, $V$) and ($S, $P$) planes.
Abstract: In this paper, we study the thermodynamic geometry of charged Gauss-Bonnet black holes (and Reissner-Nordstr\"om black holes, for the sake of comparison) in anti--de Sitter spacetimes in both ($T$, $V$) and ($S$, $P$) planes. The thermodynamic phase space is known to have an underlying contact and metric structure; Ruppeiner geometry then naturally arises in this framework. Sign of Ruppeiner curvature can be used to probe the nature of interactions between the black hole microstructures. It is found that there are both attraction and repulsion dominated regions which are in general determined by the electric charge, Gauss-Bonnet coupling, and horizon radius of the black hole. The results are physically explained by considering that these black hole systems consist of charged as well as neutral microstructures much like a binary mixture of fluids.

65 citations

Journal ArticleDOI
TL;DR: A novel multimodal framework for SLR system is presented by incorporating facial expression with sign gesture using two different sensors, namely Leap motion and Kinect.

64 citations

Journal ArticleDOI
TL;DR: In this article, a search for a heavy right-handed W boson decaying to a heavy neutrino and a charged lepton in events with two same-flavor leptons (e or μ) and two jets is presented.
Abstract: A search for a heavy right-handed W boson (W$_{R}$) decaying to a heavy right-handed neutrino and a charged lepton in events with two same-flavor leptons (e or μ) and two jets, is presented. The analysis is based on proton-proton collision data, collected by the CMS Collaboration at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb$^{−1}$. No significant excess above the standard model expectation is seen in the invariant mass distribution of the dilepton plus dijet system. Assuming that couplings are identical to those of the standard model, and that only one heavy neutrino flavor N$_{R}$ contributes significantly to the W$_{R}$ decay width, the region in the two-dimensional $ \left({m}_{{\mathrm{W}}_{\mathrm{R}}},{m}_{{\mathrm{N}}_{\mathrm{R}}}\right) $ mass plane excluded at 95% confidence level extends to approximately $ {m}_{{\mathrm{W}}_{\mathrm{R}}}=4.4 $ TeV and covers a large range of right-handed neutrino masses below the W$_{R}$ boson mass. This analysis provides the most stringent limits on the W$_{R}$ mass to date.

64 citations

Journal ArticleDOI
TL;DR: In this article, an attempt has been made to synthesize binary Cu-20.5% Mo immiscible alloy by mechanical alloying of pure elemental Cu and Mo powders.

64 citations


Authors

Showing all 1220 results

NameH-indexPapersCitations
Gabor Istvan Veres135134996104
Márton Bartók7662226762
Kulamani Parida7046919139
Seema Bahinipati6552619144
Deepak Kumar Sahoo6243817308
Krishna R. Reddy5840011076
Ramayya Krishnan5219510378
Saroj K. Nayak491498319
Dipak Kumar Sahoo472347293
Ganapati Panda463568888
Raj Kishore451496886
Sukumar Mishra444057905
Mar Barrio Luna431795248
Chandra Sekhar Rout411837736
Subhransu Ranjan Samantaray391674880
Network Information
Related Institutions (5)
Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

95% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

94% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

93% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

93% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202329
202249
2021521
2020487
2019400
2018372