scispace - formally typeset
Search or ask a question
Institution

Kettering University

EducationFlint, Michigan, United States
About: Kettering University is a education organization based out in Flint, Michigan, United States. It is known for research contribution in the topics: Cancer & RNA. The organization has 6842 authors who have published 7689 publications receiving 337503 citations. The organization is also known as: GMI Engineering & Management Institute & General Motors Institute.
Topics: Cancer, RNA, Antigen, DNA, Population


Papers
More filters
Journal ArticleDOI
TL;DR: This study compares 3-year disease-free survival (DFS) in an entire population of patients with LARC, including those with cCR and those with pCR, and is the first NOM trial utilizing a regression schema for response assessment in a prospective fashion.
Abstract: Treatment of patients with non-metastatic, locally advanced rectal cancer (LARC) includes pre-operative chemoradiation, total mesorectal excision (TME) and post-operative adjuvant chemotherapy. This trimodality treatment provides local tumor control in most patients; but almost one-third ultimately die from distant metastasis. Most survivors experience significant impairment in quality of life (QoL), due primarily to removal of the rectum. A current challenge lies in identifying patients who could safely undergo rectal preservation without sacrificing survival benefit and QoL. This multi-institutional, phase II study investigates the efficacy of total neoadjuvant therapy (TNT) and selective non-operative management (NOM) in LARC. Patients with MRI-staged Stage II or III rectal cancer amenable to TME will be randomized to receive FOLFOX/CAPEOX: a) before induction neoadjuvant chemotherapy (INCT); or b) after consolidation neoadjuvant chemotherapy (CNCT), with 5-FU or capecitabine-based chemoradiation. Patients in both arms will be re-staged after completing all neoadjuvant therapy. Those with residual tumor at the primary site will undergo TME. Patients with clinical complete response (cCR) will receive non-operative management (NOM). NOM patients will be followed every 3 months for 2 years, and every 6 months thereafter. TME patients will be followed according to NCCN guidelines. All will be followed for at least 5 years from the date of surgery or—in patients treated with NOM—the last day of treatment. The studies published thus far on the safety of NOM in LARC have compared survival between select groups of patients with a cCR after NOM, to patients with a pathologic complete response (pCR) after TME. The current study compares 3-year disease-free survival (DFS) in an entire population of patients with LARC, including those with cCR and those with pCR. We will compare the two arms of the study with respect to organ preservation at 3 years, treatment compliance, adverse events and surgical complications. We will measure QoL in both groups. We will analyze molecular indications that may lead to more individually tailored treatments in the future. This will be the first NOM trial utilizing a regression schema for response assessment in a prospective fashion. NCT02008656

248 citations

Journal ArticleDOI
TL;DR: Data reveal a unique requirement for Tcf3 repressor function in restricting induction of the anterior-posterior axis during early mouse development.
Abstract: The roles of Lef/Tcf proteins in determining cell fate characteristics have been described in many contexts during vertebrate embryogenesis, organ and tissue homeostasis, and cancer formation. Although much of the accumulated work on these proteins involves their ability to transactivate target genes when stimulated by beta-catenin, Lef/Tcf proteins can repress target genes in the absence of stabilized beta-catenin. By ablating Tcf3 function, we have uncovered an important requirement for a repressor function of Lef/Tcf proteins during early mouse development. Tcf3-/- embryos proceed through gastrulation to form mesoderm, but they develop expanded and often duplicated axial mesoderm structures, including nodes and notochords. These duplications are preceded by ectopic expression of Foxa2, an axial mesoderm gene involved in node specification, with a concomitant reduction in Lefty2, a marker for lateral mesoderm. By contrast, expression of a beta-catenin-dependent, Lef/Tcf reporter (TOPGal), is not ectopically activated but is faithfully maintained in the primitive streak. Taken together, these data reveal a unique requirement for Tcf3 repressor function in restricting induction of the anterior-posterior axis.

248 citations

Journal ArticleDOI
21 Feb 2002-Nature
TL;DR: The data suggest that RNAPII stalled at a DNA lesion triggers a coordinated rescue mechanism that requires the Rad26–Def1 complex, and that Def1 enables ubiquitination and proteolysis of RNAP II when the lesion cannot be rapidly removed by Rad26-promoted DNA repair.
Abstract: Eukaryotic cells use multiple, highly conserved mechanisms to contend with ultraviolet-light-induced DNA damage1. One important response mechanism is transcription-coupled repair (TCR), during which DNA lesions in the transcribed strand of an active gene are repaired much faster than in the genome overall2. In mammalian cells, defective TCR gives rise to the severe human disorder Cockayne's syndrome (CS)3. The best-studied CS gene, CSB, codes for a Swi/Snf-like DNA-dependent ATPase, whose yeast homologue is called Rad26 (ref. 4). Here we identify a yeast protein, termed Def1, which forms a complex with Rad26 in chromatin. The phenotypes of cells lacking DEF1 are consistent with a role for this factor in the DNA damage response, but Def1 is not required for TCR. Rather, def1 cells are compromised for transcript elongation, and are unable to degrade RNA polymerase II (RNAPII) in response to DNA damage. Our data suggest that RNAPII stalled at a DNA lesion triggers a coordinated rescue mechanism that requires the Rad26–Def1 complex, and that Def1 enables ubiquitination and proteolysis of RNAPII when the lesion cannot be rapidly removed by Rad26-promoted DNA repair.

248 citations

Journal ArticleDOI
02 Jun 2006-Cell
TL;DR: It is demonstrated that p38 MAP kinase and a p38-interacting protein (p38IP) are critically required for downregulation of E-cadherin during gastrulation and p38IP binds directly to p38 and is required for p38 activation in vivo.

247 citations

Journal ArticleDOI
TL;DR: The cloning and expression of CA125 antigen opens the way to an understanding of its function in normal and malignant cells.
Abstract: Serum assays based on the CA125 antigen are widely used in the monitoring of patients with ovarian cancer; however very little is known about the molecular nature of the CA125 antigen. We recently cloned a partial cDNA (designated MUC16) that codes for a new mucin that is a strong candidate for being the CA125 antigen. This assignment has now been confirmed by transfecting a partial MUC16 cDNA into 2 CA125-negative cell lines and demonstrating the synthesis of CA125 by 3 different assays. Of the 3 antibodies (OC125, M11 and VK-8) tested on the transfected cells, only the first 2 were strongly positive, indicating the differential expression of the CA125 epitopes in these cells. The cloning and expression of CA125 antigen opens the way to an understanding of its function in normal and malignant cells.

247 citations


Authors

Showing all 6853 results

NameH-indexPapersCitations
Joan Massagué189408149951
Chris Sander178713233287
Timothy A. Springer167669122421
Murray F. Brennan16192597087
Charles M. Rice15456183812
Lloyd J. Old152775101377
Howard I. Scher151944101737
Paul Tempst14830989225
Pier Paolo Pandolfi14652988334
Barton F. Haynes14491179014
Jedd D. Wolchok140713123336
James P. Allison13748383336
Harold E. Varmus13749676320
Scott W. Lowe13439689376
David S. Klimstra13356461682
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

91% related

Washington University in St. Louis
163.7K papers, 10M citations

91% related

University of Pittsburgh
201K papers, 9.6M citations

91% related

Duke University
200.3K papers, 10.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202216
2021211
2020234
2019204
2018225