scispace - formally typeset
Search or ask a question
Institution

Memorial University of Newfoundland

EducationSt. John's, Newfoundland and Labrador, Canada
About: Memorial University of Newfoundland is a education organization based out in St. John's, Newfoundland and Labrador, Canada. It is known for research contribution in the topics: Population & Context (language use). The organization has 13818 authors who have published 27785 publications receiving 743594 citations. The organization is also known as: Memorial University & Memorial University of Newfoundland and Labrador.


Papers
More filters
Journal ArticleDOI
TL;DR: Current knowledge on the possible effects of microbiota on feeding, digestive processes, growth, and energy homeostasis in fish is described, with emphasis on the influence of brain and gut hormones, environmental factors, and inter-specific differences.
Abstract: The microorganisms within the intestinal tract (termed gut microbiota) have been shown to interact with the gut-brain axis, a bidirectional communication system between the gut and the brain mediated by hormonal, immune, and neural signals. Through these interactions, the microbiota might affect behaviors, including feeding behavior, digestive/absorptive processes (e.g., by modulating intestinal motility and the intestinal barrier), metabolism, as well as the immune response, with repercussions on the energy homeostasis and health of the host. To date, research in this field has mostly focused on mammals. Studies on non-mammalian models such as fish may provide novel insights into the specific mechanisms involved in the microbiota-brain-gut axis. This review describes our current knowledge on the possible effects of microbiota on feeding, digestive processes, growth, and energy homeostasis in fish, with emphasis on the influence of brain and gut hormones, environmental factors, and inter-specific differences.

247 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of annealing on granule morphology, composition, crystallinity, X-ray pattern, granular swelling, amylose leaching, pasting properties, gelatinization parameters, and acid and α-amylase hydrolysis of starches from cereals, legumes and tubers is reviewed.

246 citations

Journal ArticleDOI
TL;DR: Simulation results show that the proposed fuzzy PID controller produces superior control performance to the conventional PID controllers, particularly in handling nonlinearities due to time delay and saturation.
Abstract: Describes a methodology for the systematic design of fuzzy PID controllers based on theoretical fuzzy analysis and, genetic-based optimization. An important feature of the proposed controller is its simple structure. It uses a one-input fuzzy inference with three rules and at most six tuning parameters. A closed-form solution for the control action is defined in terms of the nonlinear tuning parameters. The nonlinear proportional gain is explicitly derived in the error domain. A conservative design strategy is proposed for realizing a guaranteed-PID-performance (GPP) fuzzy controller. This strategy suggests that a fuzzy PID controller should be able to produce a linear function from its nonlinearity tuning of the system. The proposed PID system is able to produce a close approximation of a linear function for approximating the GPP system. This GPP system, incorporated with a genetic solver for the optimization, will provide the performance no worse than the corresponding linear controller with respect to the specific performance criteria. Two indexes, linearity approximation index (LAI) and nonlinearity variation index (NVI), are suggested for evaluating the nonlinear design of fuzzy controllers. The proposed control system has been applied to several first-order, second-order, and fifth-order processes. Simulation results show that the proposed fuzzy PID controller produces superior control performance to the conventional PID controllers, particularly in handling nonlinearities due to time delay and saturation.

246 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the problem of minimizing the weighted earliness and tardiness of jobs scheduled on a single machine around a common due date, d, which is unrestrictively late.
Abstract: A companion paper Part I considers the problem of minimizing the weighted earliness and tardiness of jobs scheduled on a single machine around a common due date, d, which is unrestrictively late. This paper Part II considers the problem of minimizing the unweighted earliness and tardiness of jobs, allowing the possibility that d is early enough to constrain the scheduling decision. We describe several optimality conditions. The recognition version of the problem is shown to be NP-complete in the ordinary sense, confirming a well known conjecture. Moreover, this complexity definition is precise, since we describe a dynamic programming algorithm which runs in pseudopolynomial time. This algorithm is also extremely efficient computationally, providing an improvement over earlier procedures, of almost two orders of magnitude in the size of instance that can be solved. Finally, we describe a special case of the problem which is polynomially solvable.

246 citations


Authors

Showing all 13990 results

NameH-indexPapersCitations
Daniel Levy212933194778
Rakesh K. Jain2001467177727
Peter W.F. Wilson181680139852
Martin G. Larson171620117708
Peter B. Jones145185794641
Dafna D. Gladman129103675273
Guoyao Wu12276456270
Fereidoon Shahidi11995157796
David Harvey11573894678
Robert C. Haddon11257752712
Se-Kwon Kim10276339344
John E. Dowling9430528116
Mark J. Sarnak9439342485
William T. Greenough9320029230
Soottawat Benjakul9289134336
Network Information
Related Institutions (5)
University of Alberta
154.8K papers, 5.3M citations

94% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

McGill University
162.5K papers, 6.9M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

McMaster University
101.2K papers, 4.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202386
2022269
20211,808
20201,749
20191,568
20181,516