scispace - formally typeset
Search or ask a question
Institution

Oregon State University

EducationCorvallis, Oregon, United States
About: Oregon State University is a education organization based out in Corvallis, Oregon, United States. It is known for research contribution in the topics: Population & Gene. The organization has 28192 authors who have published 64044 publications receiving 2634108 citations. The organization is also known as: Oregon Agricultural College & OSU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors measured solute concentrations (15 NO3, 15 N2 (g), as well as NO3, N H3, DOC, DO, Cl − ), and hydraulic transport parameters (head, flow rates, flow paths, and residence time distributions) of an instrumented gravel bar.
Abstract: an upland agricultural stream. We measured solute concentrations ( 15 NO3 , 15 N2 (g), as well as NO3 ,N H3, DOC, DO, Cl − ), and hydraulic transport parameters (head, flow rates, flow paths, and residence time distributions) of the reach and along HZ flow paths of an instrumented gravel bar. HZ exchange was observed across the entire gravel bar (i.e., in all wells) with flow path lengths up to 4.2 m and corresponding median residence times greater than 28.5 h. The HZ transitioned from a net nitrification environment at its head (short residence times) to a net denitrification environment at its tail (long residence times). NO3 increased at short residence times from 0.32 to 0.54 mg‐ NL −1 until a threshold of 6.9 h and then consistently decreased from 0.54 to 0.03 mg‐ NL −1 . Along these same flow paths, declines were seen in DO (from 8.31 to 0.59 mg‐O2 L −1 ) and DOC (from 3.0 to 1.7 mg‐ CL −1 ). The rates of the DO and DOC removal and net nitrification were greatest during short residence times, while the rate of denitrification was greatest at long residence times. 15 NO3 tracing confirmed that a fraction of the NO3 removal was via denitrification as 15 N2 was produced across the entire gravel bar HZ. Production of 15 N2 across all observed flow paths and residence times indicated that denitrification microsites are present even where nitrification was the net outcome. These findings demonstrate that the HZ is an active nitrogen sink in this system and that the distinction between net nitrification and denitrification in the HZ is a function of residence time and exhibits threshold behavior. Consequently, incorporation of HZ exchange and water residence time characterizations will improve mechanistic predictions of nitrogen cycling in streams.

438 citations

Journal ArticleDOI
30 Oct 1998-Science
TL;DR: Although many fisheries stocks have declined precipitously throughout the world, fish farming--and especially shrimp and salmon farming--has boomed and increasingly large scale of these enterprises is now having unforeseen ecological consequences on ocean resources through habitat destruction, effluent discharge, exotic species introductions, and heightened fish catch for feed use.
Abstract: Although many fisheries stocks have declined precipitously throughout the world, fish farming--and especially shrimp and salmon farming--has boomed. The increasingly large scale of these enterprises is now having unforeseen ecological consequences on ocean resources through habitat destruction, effluent discharge, exotic species introductions, and heightened fish catch for feed use. Ending unsustainable production practices will require reorienting regulatory policies and fiscal incentives in shrimp- and salmon-producing counties, and enhancing restrictions on environmentally unsound practices.

438 citations

Journal ArticleDOI
01 Jul 1998-Geology
TL;DR: Authigenic carbonates are intercalated with massive gas hydrates in sediments of the Cascadia margin this paper, and two carbonate lithologies that differ in chemistry, mineralogy, and fabric make up these deposits.
Abstract: Authigenic carbonates are intercalated with massive gas hydrates in sediments of the Cascadia margin. The deposits were recovered from the uppermost 50 cm of sediments on the southern summit of the Hydrate Ridge during the RV Sonne cruise SO110. Two carbonate lithologies that differ in chemistry, mineralogy, and fabric make up these deposits. Microcrystalline high-magnesium calcite (14 to 19 mol% MgCO3) and aragonite are present in both semiconsolidated sediments and carbonate-cemented clasts. Aragonite occurs also as a pure phase without sediment impurities. It is formed by precipitation in cavities as botryoidal and isopachous aggregates within pure white, massive gas hydrate. Variations in oxygen isotope values of the carbonates reflect the mineralogical composition and define two end members: a Mg-calcite with δ18O =4.86‰ PDB and an aragonite with δ18O =3.68‰ PDB. On the basis of the ambient bottom-water temperature and accepted equations for oxygen isotope fractionation, we show that the aragonite phase formed in equilibrium with its pore-water environment, and that the Mg-calcite appears to have precipitated from pore fluids enriched in 18O. Oxygen isotope enrichment probably originates from hydrate water released during gas-hydrate destabilization.

437 citations

Journal ArticleDOI
Emily Ho1
TL;DR: This review will focus on potential mechanisms by which zinc deficiency impairs host protective mechanisms designed to protect against DNA damage, enhances susceptibility to DNA-damaging agents and ultimately increases risk for cancer.
Abstract: A large body of evidence suggests that a significant percentage of deaths resulting from cancer in the United States could be avoided through greater attention to proper and adequate nutrition. Although many dietary compounds have been suggested to contribute to the prevention of cancer, there is strong evidence to support the fact that zinc, a key constituent or cofactor of over 300 mammalian proteins, may be of particular importance in host defense against the initiation and progression of cancer. Remarkably, 10% of the U.S. population consumes less than half the recommended dietary allowance for zinc and are at increased risk for zinc deficiency. Zinc is known to be an essential component of DNA-binding proteins with zinc fingers, as well as copper/zinc superoxide dismutase and several proteins involved in DNA repair. Thus, zinc plays an important role in transcription factor function, antioxidant defense and DNA repair. Dietary deficiencies in zinc can contribute to single- and double-strand DNA breaks and oxidative modifications to DNA that increase risk for cancer development. This review will focus on potential mechanisms by which zinc deficiency impairs host protective mechanisms designed to protect against DNA damage, enhances susceptibility to DNA-damaging agents and ultimately increases risk for cancer.

437 citations


Authors

Showing all 28447 results

NameH-indexPapersCitations
Robert Stone1601756167901
Menachem Elimelech15754795285
Thomas J. Smith1401775113919
Harold A. Mooney135450100404
Jerry M. Melillo13438368894
John F. Thompson132142095894
Thomas N. Williams132114595109
Peter M. Vitousek12735296184
Steven W. Running12635576265
Vincenzo Di Marzo12665960240
J. D. Hansen12297576198
Peter Molnar11844653480
Michael R. Hoffmann10950063474
David Pollard10843839550
David J. Hill107136457746
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

University of Florida
200K papers, 7.1M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023105
2022377
20213,156
20203,109
20193,017
20182,987