scispace - formally typeset
Search or ask a question

Showing papers by "Polytechnic University of Catalonia published in 2015"


Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations


Proceedings ArticleDOI
07 Dec 2015
TL;DR: This paper uses Convolutional Neural Networks to learn discriminant patch representations and in particular train a Siamese network with pairs of (non-)corresponding patches to develop 128-D descriptors whose euclidean distances reflect patch similarity and can be used as a drop-in replacement for any task involving SIFT.
Abstract: Deep learning has revolutionalized image-level tasks such as classification, but patch-level tasks, such as correspondence, still rely on hand-crafted features, e.g. SIFT. In this paper we use Convolutional Neural Networks (CNNs) to learn discriminant patch representations and in particular train a Siamese network with pairs of (non-)corresponding patches. We deal with the large number of potential pairs with the combination of a stochastic sampling of the training set and an aggressive mining strategy biased towards patches that are hard to classify. By using the L2 distance during both training and testing we develop 128-D descriptors whose euclidean distances reflect patch similarity, and which can be used as a drop-in replacement for any task involving SIFT. We demonstrate consistent performance gains over the state of the art, and generalize well against scaling and rotation, perspective transformation, non-rigid deformation, and illumination changes. Our descriptors are efficient to compute and amenable to modern GPUs, and are publicly available.

848 citations


Journal ArticleDOI
01 Jul 2015
TL;DR: The recent advances in modern BCG and SCG research are reviewed, including reduced measurement noise, clinically relevant feature extraction, and signal modeling.
Abstract: In the past decade, there has been a resurgence in the field of unobtrusive cardiomechanical assessment, through advancing methods for measuring and interpreting ballistocardiogram (BCG) and seismocardiogram (SCG) signals. Novel instrumentation solutions have enabled BCG and SCG measurement outside of clinical settings, in the home, in the field, and even in microgravity. Customized signal processing algorithms have led to reduced measurement noise, clinically relevant feature extraction, and signal modeling. Finally, human subjects physiology studies have been conducted using these novel instruments and signal processing tools with promising results. This paper reviews the recent advances in these areas of modern BCG and SCG research.

558 citations


Journal ArticleDOI
TL;DR: This review provides an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification.
Abstract: Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile –the metabolome- has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance (NMR) and mass spectrometry (MS) are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high throughput biotechnologies is also reviewed.

518 citations


Journal ArticleDOI
TL;DR: It is demonstrated that efficiencies above 22% can be reached, even in thick interdigitated back-contacted cells, where carrier transport is very sensitive to front surface passivation, meaning that the surface recombination issue has truly been solved and black silicon solar cells have real potential for industrial production.
Abstract: A power conversion efficiency of 22% is achieved in black silicon back-contacted solar cells through passivation of the nanostructured surface by a conformal alumina layer.

509 citations


Journal ArticleDOI
TL;DR: A review of the research done during the last years in the area of the cement-based composites reinforced with cellulose fibers is presented in this article, where the main achievements found have been the development of durable cement composites with optimized fiber-matrix adhesion.

438 citations


Journal ArticleDOI
TL;DR: The quality measures proposed in the literature are reviewed according to the main aspect they evaluate: location of contact points on the object and hand configuration and some measures related to human hand studies and grasp performance are presented.
Abstract: The correct grasp of objects is a key aspect for the right fulfillment of a given task. Obtaining a good grasp requires algorithms to automatically determine proper contact points on the object as well as proper hand configurations, especially when dexterous manipulation is desired, and the quantification of a good grasp requires the definition of suitable grasp quality measures. This article reviews the quality measures proposed in the literature to evaluate grasp quality. The quality measures are classified into two groups according to the main aspect they evaluate: location of contact points on the object and hand configuration. The approaches that combine different measures from the two previous groups to obtain a global quality measure are also reviewed, as well as some measures related to human hand studies and grasp performance. Several examples are presented to illustrate and compare the performance of the reviewed measures.

383 citations


Journal ArticleDOI
TL;DR: In this article, a finite element analysis (FEA) simulation with physical testing was used to determine the stiffness matrix of an orthotropic material, including three Young's modulus, three Poisson's ratio and three shear modulus.

365 citations


Journal ArticleDOI
29 Jun 2015
TL;DR: This task force paper summarizes the state-of-the-art real-time digital simulation concepts and technologies that are used for the analysis, design, and testing of the electric power system and its apparatus.
Abstract: This task force paper summarizes the state-of-the-art real-time digital simulation concepts and technologies that are used for the analysis, design, and testing of the electric power system and its apparatus. This paper highlights the main building blocks of the real-time simulator, i.e., hardware, software, input-output systems, modeling, and solution techniques, interfacing capabilities to external hardware and various applications. It covers the most commonly used real-time digital simulators in both industry and academia. A comprehensive list of the real-time simulators is provided in a tabular review. The objective of this paper is to summarize salient features of various real-time simulators, so that the reader can benefit from understanding the relevant technologies and their applications, which will be presented in a separate paper.

357 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide values and predictive expressions for the key parameters in existing stainless steel material models based on the analysis of a comprehensive experimental database, which comprises experimental stress-strain curves collected from the literature, supplemented by some tensile tests on austenitic, ferritic and duplex stainless steel coupons conducted herein.

341 citations


Journal ArticleDOI
TL;DR: The results suggest that biodegradation and photodegradation are the most important removal pathways, whereas volatilization and sorption were solely achieved for hydrophobic compounds with a moderately high Henry's law constant values such as musk fragrances.

Journal ArticleDOI
TL;DR: A framework for the joint optimization of the radio and computational resource usage exploiting the tradeoff between energy consumption and latency is provided and the minimization of the total consumed energy without latency constraints is analyzed.
Abstract: Providing femto access points (FAPs) with computational capabilities will allow (either total or partial) offloading of highly demanding applications from smartphones to the so-called femto-cloud. Such offloading promises to be beneficial in terms of battery savings at the mobile terminal (MT) and/or in latency reduction in the execution of applications. However, for this promise to become a reality, the energy and/or the time required for the communication process must be compensated by the energy and/or the time savings that result from the remote computation at the FAPs. For this problem, we provide in this paper a framework for the joint optimization of the radio and computational resource usage exploiting the tradeoff between energy consumption and latency. Multiple antennas are assumed to be available at the MT and the serving FAP. As a result of the optimization, the optimal communication strategy (e.g., transmission power, rate, and precoder) is obtained, as well as the optimal distribution of the computational load between the handset and the serving FAP. This paper also establishes the conditions under which total or no offloading is optimal, determines which is the minimum affordable latency in the execution of the application, and analyzes, as a particular case, the minimization of the total consumed energy without latency constraints.

Proceedings ArticleDOI
13 Apr 2015
TL;DR: This paper formulates the online virtual function mapping and scheduling problem and proposes a set of algorithms for solving it and proposes three greedy algorithms and a tabu search-based heuristic.
Abstract: Network function virtualization has received attention from both academia and industry as an important shift in the deployment of telecommunication networks and services. It is being proposed as a path towards cost efficiency, reduced time-to-markets, and enhanced innovativeness in telecommunication service provisioning. However, efficiently running virtualized services is not trivial as, among other initialization steps, it requires first mapping virtual networks onto physical networks, and thereafter mapping and scheduling virtual functions onto the virtual networks. This paper formulates the online virtual function mapping and scheduling problem and proposes a set of algorithms for solving it. Our main objective is to propose simple algorithms that may be used as a basis for future work in this area. To this end, we propose three greedy algorithms and a tabu search-based heuristic. We carry out evaluations of these algorithms considering parameters such as successful service mappings, total service processing times, revenue, cost etc, under varying network conditions. Simulations show that the tabu search-based algorithm performs only slightly better than the best greedy algorithm.

Journal ArticleDOI
TL;DR: This work shows that collective cellular responses to selective perturbations of the intercellular adhesome conform to three mechanical phenotypes; these phenotypes are controlled by different molecular modules and characterized by distinct relationships between cellular kinematics and inter cellular forces.
Abstract: Dynamics of epithelial tissues determine key processes in development, tissue healing and cancer invasion. These processes are critically influenced by cell-cell adhesion forces. However, the identity of the proteins that resist and transmit forces at cell-cell junctions remains unclear, and how these proteins control tissue dynamics is largely unknown. Here we provide a systematic study of the interplay between cell-cell adhesion proteins, intercellular forces and epithelial tissue dynamics. We show that collective cellular responses to selective perturbations of the intercellular adhesome conform to three mechanical phenotypes. These phenotypes are controlled by different molecular modules and characterized by distinct relationships between cellular kinematics and intercellular forces. We show that these forces and their rates can be predicted by the concentrations of cadherins and catenins. Unexpectedly, we identified different mechanical roles for P-cadherin and E-cadherin; whereas P-cadherin predicts levels of intercellular force, E-cadherin predicts the rate at which intercellular force builds up.

Proceedings ArticleDOI
27 May 2015
TL;DR: This paper describes the LDBC Social Network Benchmark (SNB), and presents database benchmarking innovation in terms of graph query functionality tested, correlated graph generation techniques, as well as a scalable benchmark driver on a workload with complex graph dependencies.
Abstract: The Linked Data Benchmark Council (LDBC) is now two years underway and has gathered strong industrial participation for its mission to establish benchmarks, and benchmarking practices for evaluating graph data management systems. The LDBC introduced a new choke-point driven methodology for developing benchmark workloads, which combines user input with input from expert systems architects, which we outline. This paper describes the LDBC Social Network Benchmark (SNB), and presents database benchmarking innovation in terms of graph query functionality tested, correlated graph generation techniques, as well as a scalable benchmark driver on a workload with complex graph dependencies. SNB has three query workloads under development: Interactive, Business Intelligence, and Graph Algorithms. We describe the SNB Interactive Workload in detail and illustrate the workload with some early results, as well as the goals for the two other workloads.

Journal ArticleDOI
01 Jul 2015
TL;DR: A novel artificial bee colony based maximum power point tracking algorithm (MPPT) that does not allow only overcoming the common drawback of the conventional MPPT methods, but it gives a simple and a robust MPPT scheme.
Abstract: An artificial bee colony based MPPT under partially shaded conditions is proposed.Photovoltaic systems are considered.A co-simulation methodology combining Simulink and Pspice has been adopted.Excellent efficiency and tracking performance compared to the PSO-based MPPT.The effectiveness of the proposed method has been confirmed experimentally. Artificial bee colony (ABC) algorithm has several characteristics that make it more attractive than other bio-inspired methods. Particularly, it is simple, it uses fewer control parameters and its convergence is independent of the initial conditions. In this paper, a novel artificial bee colony based maximum power point tracking algorithm (MPPT) is proposed. The developed algorithm, does not allow only overcoming the common drawback of the conventional MPPT methods, but it gives a simple and a robust MPPT scheme. A co-simulation methodology, combining Matlab/Simulink? and Cadence/Pspice?, is used to verify the effectiveness of the proposed method and compare its performance, under dynamic weather conditions, with that of the Particle Swarm Optimization (PSO) based MPPT algorithm. Moreover, a laboratory setup has been realized and used to experimentally validate the proposed ABC-based MPPT algorithm. Simulation and experimental results have shown the satisfactory performance of the proposed approach.

Journal ArticleDOI
TL;DR: In this paper, the physicochemical properties (thickness, solubility in water and acid, water vapor permeability, opacity, tensile strength and elongation at break) of composite films based on corn starch and gelatin, plasticized with glycerol or sorbitol were evaluated.

Journal ArticleDOI
TL;DR: In this article, the main novelty is the simultaneous management of energy production and energy demand within a reactive scheduling approach to deal with the presence of uncertainty associated to production and consumption, where delays in nominal energy demands are allowed under associated penalty costs to tackle flexible and fluctuating demand profiles.

Journal ArticleDOI
TL;DR: In this article, a natural zeolite (Z-N) was modified by incorporation of hydrated aluminum oxide (HAlO) for the simultaneous phosphate and ammonium removal.

Journal ArticleDOI
TL;DR: In this article, an advanced vector current control for a voltage source converter (VSC) connected to a weak grid is proposed, which permits high-performance regulation of the active power and the voltage for the feasible VSC range of operation.
Abstract: This paper addresses an advanced vector current control for a voltage source converter (VSC) connected to a weak grid. The proposed control methodology permits high-performance regulation of the active power and the voltage for the feasible VSC range of operation. First, the steady state characteristics for a power converter connected to a very weak system with a short circuit ratio (SCR) of 1 are discussed in order to identify the system limits. Then, the conventional vector control (inner loop) and the conventional power/voltage control (outer loop) stability and frequency responses are analyzed. From the analysis of the classic structure, an enhanced outer loop based on a decoupled and gain-scheduling controller is presented and its stability is analyzed. The proposed control is validated by means of dynamic simulations and it is compared with classic vector current control. Simulation results illustrate that the proposed control system could provide a promising approach to tackle the challenging problem of VSC in connection with weak AC grids.

Journal ArticleDOI
TL;DR: The SRRG lens was similarly effective to OK in preventing myopia progression in myopic children and adolescent and significantly decreased AL elongation compared to the SV control group.
Abstract: Objective. To evaluate the degree of axial elongation with soft radial refractive gradient (SRRG) contact lenses, orthokeratology (OK), and single vision (SV) spectacle lenses (control) during a period of 1 year before treatment and 2 years after treatment. Methods. This was a prospective, longitudinal, nonrandomized study. The study groups consisted of 30, 29, and 41 children, respectively. The axial length (AL) was measured during 2 years after recruitment and lens fitting. Results. The baseline refractive sphere was correlated significantly (Spearman’s Rho (ρ) correlation = 0.542; P < 0.0001) with the amount of myopia progression before baseline. After 2 years, the mean myopia progression values for the SRRG, OK, and SV groups were −0.56 ± 0.51, −0.32 ± 0.53, and −0.98 ± 0.58 diopter, respectively. The results represent reductions in myopic progression of 43% and 67% for the SRRG and OK groups, respectively, compared to the SV group. The AL increased 27% and 38% less in the SRRG and OK groups, respectively compared with the SV group at the 2-year visit (P < 0.05). Axial elongation was not significantly different between SRRG and OK (P = 0.430). Conclusion. The SRRG lens significantly decreased AL elongation compared to the SV control group. The SRRG lens was similarly effective to OK in preventing myopia progression in myopic children and adolescent.

Journal ArticleDOI
TL;DR: In the second week of September 2013, a seasonally uncharacteristic weather pattern stalled over the Rocky Mountain Front Range region of northern Colorado bringing with it copious amounts of moisture from the Gulf of Mexico, Caribbean Sea, and the tropical eastern Pacific Ocean as mentioned in this paper.
Abstract: During the second week of September 2013, a seasonally uncharacteristic weather pattern stalled over the Rocky Mountain Front Range region of northern Colorado bringing with it copious amounts of moisture from the Gulf of Mexico, Caribbean Sea, and the tropical eastern Pacific Ocean. This feed of moisture was funneled toward the east-facing mountain slopes through a series of mesoscale circulation features, resulting in several days of unusually widespread heavy rainfall over steep mountainous terrain. Catastrophic flooding ensued within several Front Range river systems that washed away highways, destroyed towns, isolated communities, necessitated days of airborne evacuations, and resulted in eight fatalities. The impacts from heavy rainfall and flooding were felt over a broad region of northern Colorado leading to 18 counties being designated as federal disaster areas and resulting in damages exceeding $2 billion (U.S. dollars). This study explores the meteorological and hydrological ingredients...

Journal ArticleDOI
TL;DR: DNase I-activated nanoparticles were not only able to prevent biofilm formation from planktonic bacteria, but they also successfully reduced established biofilm mass, size and living cell density, as observed in a dynamic environment in a flow cell biofilm assay.

Journal ArticleDOI
TL;DR: In this paper, the optimal sizing of hybrid grid-connected photovoltaic-wind power systems from real hourly wind and solar irradiation data and electricity demand from a certain location is investigated.

Journal ArticleDOI
TL;DR: In this paper, a hybrid constructed wetland (CW) system based on three stages of different wetlands configurations showed to be a very robust ecotechnology for domestic wastewater treatment and reuse in small communities.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the effect of hydrothermal pretreatment prior to batch and continuous reactors for enhancing microalgae methane yield and found that pretreatment increased organic matter solubilisation (8-13%), anaerobic digestion rate (30-90%), and final methane yield (17-39%).

Journal ArticleDOI
TL;DR: Small changes in hydrostatic pressure are used to drive giant inverse barocaloric effects near the ferrielectric phase transition in ammonium sulphate, and these effects and strengths are found that exceed those previously observed near magnetostructural phase transitions in magnetic materials.
Abstract: Caloric effects are currently under intense study due to the prospect of environment-friendly cooling applications. Most of the research is centred on large magnetocaloric effects and large electrocaloric effects, but the former require large magnetic fields that are challenging to generate economically and the latter require large electric fields that can only be applied without breakdown in thin samples. Here we use small changes in hydrostatic pressure to drive giant inverse barocaloric effects near the ferrielectric phase transition in ammonium sulphate. We find barocaloric effects and strengths that exceed those previously observed near magnetostructural phase transitions in magnetic materials. Our findings should therefore inspire the discovery of giant barocaloric effects in a wide range of unexplored ferroelectric materials, ultimately leading to barocaloric cooling devices.

Journal ArticleDOI
TL;DR: A new computational method is developed, robust to biological and technical variability, which identifies significant transcript isoform changes across multiple samples, and reveals novel signatures of cancer in terms of transcript isoforms specifically expressed in tumors, providing novel potential molecular targets for prognosis and therapy.
Abstract: The determination of the alternative splicing isoforms expressed in cancer is fundamental for the development of tumor-specific molecular targets for prognosis and therapy, but it is hindered by the heterogeneity of tumors and the variability across patients. We developed a new computational method, robust to biological and technical variability, which identifies significant transcript isoform changes across multiple samples. We applied this method to more than 4000 samples from the The Cancer Genome Atlas project to obtain novel splicing signatures that are predictive for nine different cancer types, and find a specific signature for basal-like breast tumors involving the tumor-driver CTNND1. Additionally, our method identifies 244 isoform switches, for which the change occurs in the most abundant transcript. Some of these switches occur in known tumor drivers, including PPARG, CCND3, RALGDS, MITF, PRDM1, ABI1 and MYH11, for which the switch implies a change in the protein product. Moreover, some of the switches cannot be described with simple splicing events. Surprisingly, isoform switches are independent of somatic mutations, except for the tumor-suppressor FBLN2 and the oncogene MYH11. Our method reveals novel signatures of cancer in terms of transcript isoforms specifically expressed in tumors, providing novel potential molecular targets for prognosis and therapy. Data and software are available at: http://dx.doi.org/10.6084/m9.figshare.1061917 and https://bitbucket.org/regulatorygenomicsupf/iso-ktsp.

Journal ArticleDOI
15 Jun 2015-Energy
TL;DR: This research compares the accuracy of different Machine Learning methodologies for the hourly energy forecasting in buildings and proposes a hybrid methodology that combines feature selection based on entropies with soft computing and machine learning approaches, i.e. Fuzzy Inductive Reasoning, Random Forest and Neural Networks.

Journal ArticleDOI
TL;DR: In this paper, a variational phase-field model for strongly anisotropic fracture was proposed, which resorts to the extended Cahn-Hilliard framework proposed in the context of crystal growth.
Abstract: Crack propagation in brittle materials with anisotropic surface energy is important in applications involving single crystals, extruded polymers, or geological and organic materials. Furthermore, when this anisotropy is strong, the phenomenology of crack propagation becomes very rich, with forbidden crack propagation directions or complex sawtooth crack patterns. This problem interrogates fundamental issues in fracture mechanics, including the principles behind the selection of crack direction. Here, we propose a variational phase-field model for strongly anisotropic fracture, which resorts to the extended Cahn-Hilliard framework proposed in the context of crystal growth. Previous phase-field models for anisotropic fracture were formulated in a framework only allowing for weak anisotropy. We implement numerically our higher-order phase-field model with smooth local maximum entropy approximants in a direct Galerkin method. The numerical results exhibit all the features of strongly anisotropic fracture and reproduce strikingly well recent experimental observations.