scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Catalysis. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the coexistence of global and local weak chemical bonds is elucidated as the origin of the intrinsically low lattice thermal conductivity of non-caged structure Nowotny-Juza compound, α-MgAgSb, which is identified as a new type of promising thermoelectric material in the temperature range of 300-550 K.
Abstract: Understanding the lattice dynamics and phonon transport from the perspective of chemical bonds is essential for improving and finding high-efficiency thermoelectric materials and for many applications Here, the coexistence of global and local weak chemical bonds is elucidated as the origin of the intrinsically low lattice thermal conductivity of non-caged structure Nowotny–Juza compound, α-MgAgSb, which is identified as a new type of promising thermoelectric material in the temperature range of 300–550 K The global weak bonds of the compound lead to a low sound velocity The unique three-centered MgAgSb bonds in α-MgAgSb vibrate locally and induce low-frequency optical phonons, resulting in “rattling-like” thermal damping to further reduce the lattice thermal conductivity The hierarchical chemical bonds originate from the low valence electron count of α-MgAgSb, with the feature shared by Nowotny–Juza compounds Low lattice thermal conductivities are therefore highly possible in this series of compounds, which is verified by phonon and bulk modulus calculations on some of the compositions

183 citations

Journal ArticleDOI
TL;DR: An accurate prediction model for hot spot residues, given the structure of a protein complex is developed and several new features based on the protrusion index of amino acid residues are proposed, which have been shown to significantly improve the prediction performance of hot spots.
Abstract: Background: It is well known that most of the binding free energy of protein interaction is contributed by a few key hot spot residues. These residues are crucial for understanding the function of proteins and studying their interactions. Experimental hot spots detection methods such as alanine scanning mutagenesis are not applicable on a large scale since they are time consuming and expensive. Therefore, reliable and efficient computational methods for identifying hot spots are greatly desired and urgently required. Results: In this work, we introduce an efficient approach that uses support vector machine (SVM) to predict hot spot residues in protein interfaces. We systematically investigate a wide variety of 62 features from a combination of protein sequence and structure information. Then, to remove redundant and irrelevant features and improve the prediction performance, feature selection is employed using the F-score method. Based on the selected features, nine individualfeature based predictors are developed to identify hot spots using SVMs. Furthermore, a new ensemble classifier, namely APIS (A combined model based on Protrusion Index and Solvent accessibility), is developed to further improve the prediction accuracy. The results on two benchmark datasets, ASEdb and BID, show that this proposed method yields significantly better prediction accuracy than those previously published in the literature. In addition, we also demonstrate the predictive power of our proposed method by modelling two protein complexes: the calmodulin/ myosin light chain kinase complex and the heat shock locus gene products U and V complex, which indicate that our method can identify more hot spots in these two complexes compared with other state-of-the-art methods. Conclusion: We have developed an accurate prediction model for hot spot residues, given the structure of a protein complex. A major contribution of this study is to propose several new features based on the protrusion index of amino acid residues, which has been shown to significantly improve the prediction performance of hot spots. Moreover, we identify a compact and useful feature subset that has an important implication for identifying hot spot residues. Our results indicate that these features are more effective than the conventional evolutionary conservation, pairwise residue potentials and other traditional features considered previously, and that the combination of our and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spot residues. The data and source code are available on web site http://home.ustc.edu.cn/~jfxia/hotspot.html.

183 citations

Journal ArticleDOI
TL;DR: This study used machine learning (ML) algorithms to identify low-engagement students in a social science course at the Open University to assess the effect of engagement on student performance and developed a dashboard to facilitate instructor at the OU.
Abstract: Several challenges are associated with e-learning systems, the most significant of which is the lack of student motivation in various course activities and for various course materials. In this study, we used machine learning (ML) algorithms to identify low-engagement students in a social science course at the Open University (OU) to assess the effect of engagement on student performance. The input variables of the study included highest education level, final results, score on the assessment, and the number of clicks on virtual learning environment (VLE) activities, which included dataplus, forumng, glossary, oucollaborate, oucontent, resources, subpages, homepage, and URL during the first course assessment. The output variable was the student level of engagement in the various activities. To predict low-engagement students, we applied several ML algorithms to the dataset. Using these algorithms, trained models were first obtained; then, the accuracy and kappa values of the models were compared. The results demonstrated that the J48, decision tree, JRIP, and gradient-boosted classifiers exhibited better performance in terms of the accuracy, kappa value, and recall compared to the other tested models. Based on these findings, we developed a dashboard to facilitate instructor at the OU. These models can easily be incorporated into VLE systems to help instructors evaluate student engagement during VLE courses with regard to different activities and materials and to provide additional interventions for students in advance of their final exam. Furthermore, this study examined the relationship between student engagement and the course assessment score.

183 citations

Journal ArticleDOI
TL;DR: In this paper, a dual-doped reduced graphene oxide (rGO) encapsulating hollow ZnSnS3 nano-microcubes is designed to improve the sluggish reaction kinetics, poor cycling stability and unsatisfactory rate capability of metal sulfides.

183 citations

Journal ArticleDOI
TL;DR: It has been demonstrated that the Fe2O3-promoted halloysite-supported CeO2-WO3 catalyst increased the ratio of Ce3+ and the amount of surface oxygen vacancies and enhanced the interaction between active components, making the catalyst exhibit desirable sulfur resistance.
Abstract: Currently, selective catalytic reduction (SCR) of NO x with NH3 in the presence of SO2 by using vanadium-free catalysts is still an important issue for the removal of NO x for stationary sources. Developing high-performance catalysts for NO x reduction in the presence of SO2 is a significant challenge. In this work, a series of Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts were synthesized by a molten salt treatment followed by the impregnation method and demonstrated improved NO x reduction in the presence of SO2. The obtained catalyst exhibits superior catalytic activity, high N2 selectivity over a wide temperature range from 270 to 420 °C, and excellent sulfur-poisoning resistance. It has been demonstrated that the Fe2O3-promoted halloysite-supported CeO2-WO3 catalyst increased the ratio of Ce3+ and the amount of surface oxygen vacancies and enhanced the interaction between active components. Moreover, the SCR reaction mechanism of the obtained catalyst was studied using in situ diffuse reflectance infrared Fourier transform spectroscopy. It can be inferred that the number of Bronsted acid sites is significantly increased, and more active species could be produced by Fe2O3 promotion. Furthermore, in the presence of SO2, the Fe2O3-promoted halloysite-supported CeO2-WO3 catalyst can effectively prevent the irreversible bonding of SO2 with the active components, making the catalyst exhibit desirable sulfur resistance. The work paves the way for the development of high-performance SCR catalysts with improved NO x reduction in the presence of SO2.

183 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022742
20216,322
20205,569
20195,063
20184,235