scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Catalysis. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the microwave assisted synthesis of a Co3O4-graphene sheet-on-sheet nanostructure was reported, which showed an excellent high rate capability and highly reversible large capacity at common rate.
Abstract: This paper reports the microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanostructure. This sheet-on-sheet nanocomposite showed an excellent high rate capability and highly reversible large capacity at common rate. A capacity of 931 mA h g−1 was observed at a large current rate of 5C (4450 mA g−1), which was still larger than the theoretical capacity of Co3O4 (890 mAh g−1). The substantially improved electrochemical properties were ascribed to the unique sheet-on-sheet nanostructure. Co3O4 nanosheets were tightly stacked with graphene nanosheets (GNS), therefore volume changes of Co3O4 materials were accommodated in the presence of GNS. On the other hand, sheet-like Co3O4 was very effective to prevent the reassembly of GNS to graphite platelets, thus preserving GNS advantages during repetitive cycling.

256 citations

Journal ArticleDOI
Na Song1, Dejin Jiao1, Siqi Cui1, Xingshuang Hou1, Peng Ding1, Liyi Shi1 
TL;DR: An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer assembly of graphene oxide and nanofibrillated cellulose on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process.
Abstract: An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer (LbL) assembly of graphene oxide (GO) and nanofibrillated cellulose (NFC) on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process. The resulting NFC/reduced graphene oxide (RGO) hybrid film reveals an orderly hierarchical structure in which the RGO nanosheets exhibit a high degree of orientation along the in-plane direction. The assembly cycles dramatically increase the in-plane thermal conductivity (λX) of the hybrid film to 12.6 W·m–1·K–1, while the cross-plane thermal conductivity (λZ) shows a lower value of 0.042 W·m–1·K–1 in the hybrid film with 40 assembly cycles. The thermal conductivity anisotropy reaches up to λX/λZ = 279, which is substantially larger than that of similar polymeric nanocomposites, indicating that the LbL assembly on a flexible NFC substrate is an efficient technique for the preparation of polymeric n...

254 citations

Journal ArticleDOI
TL;DR: The authors apply the inverse design approach to identify and experimentally realize TaFeSb-based half Heuslers with high thermoelectric performance and demonstrate that the TaFe Sb- based half-Heuslers are highly promising for thermoelectedric power generation.
Abstract: Discovery of thermoelectric materials has long been realized by the Edisonian trial and error approach. However, recent progress in theoretical calculations, including the ability to predict structures of unknown phases along with their thermodynamic stability and functional properties, has enabled the so-called inverse design approach. Compared to the traditional materials discovery, the inverse design approach has the potential to substantially reduce the experimental efforts needed to identify promising compounds with target functionalities. By adopting this approach, here we have discovered several unreported half-Heusler compounds. Among them, the p-type TaFeSb-based half-Heusler demonstrates a record high ZT of ~1.52 at 973 K. Additionally, an ultrahigh average ZT of ~0.93 between 300 and 973 K is achieved. Such an extraordinary thermoelectric performance is further verified by the heat-to-electricity conversion efficiency measurement and a high efficiency of ~11.4% is obtained. Our work demonstrates that the TaFeSb-based half-Heuslers are highly promising for thermoelectric power generation. The discovery of thermodynamically stable thermoelectric materials for power generation has relied on empirical methods that were not effective. Here, the authors apply the inverse design approach to identify and experimentally realize TaFeSb-based half Heuslers with high thermoelectric performance.

253 citations

Journal ArticleDOI
TL;DR: A digital twin and its application are introduced along with the development of intelligent manufacturing based on the digital twin technology and the future development direction of intelligent Manufacturing is presented.
Abstract: As the next-generation manufacturing system, intelligent manufacturing enables better quality, higher productivity, lower cost, and increased manufacturing flexibility. The concept of sustainability is receiving increasing attention, and sustainable manufacturing is evolving. The digital twin is an emerging technology used in intelligent manufacturing that can grasp the state of intelligent manufacturing systems in real-time and predict system failures. Sustainable intelligent manufacturing based on a digital twin has advantages in practical applications. To fully understand the intelligent manufacturing that provides the digital twin, this study reviews both technologies and discusses the sustainability of intelligent manufacturing. Firstly, the relevant content of intelligent manufacturing, including intelligent manufacturing equipment, systems, and services, is analyzed. In addition, the sustainability of intelligent manufacturing is discussed. Subsequently, a digital twin and its application are introduced along with the development of intelligent manufacturing based on the digital twin technology. Finally, combined with the current status, the future development direction of intelligent manufacturing is presented.

253 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of an event-triggered non-parallel distribution compensation (PDC) control for networked Takagi–Sugeno (T–S) fuzzy systems, under consideration of the limited data transmission bandwidth and the imperfect premise matching membership functions.
Abstract: This paper addresses the problem of an event-triggered non-parallel distribution compensation (PDC) control for networked Takagi–Sugeno (T–S) fuzzy systems, under consideration of the limited data transmission bandwidth and the imperfect premise matching membership functions. First, a unified event-triggered T–S fuzzy model is provided, in which: 1) a fuzzy observer with the imperfect premise matching is constructed to estimate the unmeasurable states of the studied system; 2) a fuzzy controller is designed following the same premise as the observer; and 3) an output-based event-triggering transmission scheme is designed to economize the restricted network resources. Different from the traditional PDC method, the synchronous premise between the fuzzy observer and the T–S fuzzy system are no longer needed in this paper. Second, by use of Lyapunov theory, a stability criterion and a stabilization condition are obtained for ensuring asymptotically stable of the studied system. On account of the imperfect premise matching conditions are well considered in the derivation of the above criteria, less conservation can be expected to enhance the design flexibility. Compared with some existing emulation-based methods, the controller gains are no longer required to be known a priori . Finally, the availability of proposed non-PDC design scheme is illustrated by the backing-up control of a truck-trailer system.

253 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022742
20216,322
20205,569
20195,063
20184,235